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Summary

 We propose the Inner SOlar System CHRONology (ISOCHRON)
Discovery mission concept: an automated lunar sample return
mission to mare basalt units south of the Aristarchus Plateau
estimated to be ~1.5-2.0 Gyr old

 WIll address fundamental questions about the time-stratigraphy of
lunar magmatic processes and the composition of the lunar crust
with implications for all of the terrestrial planets
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 Addresses numerous key outstanding questions identified by several
recent community assessments [1-3]

Science Goals

 Primary: High-precision radiometric age measurements on young
basalts to fill existing gap in age-correlated crater size-frequency
distributions (CSFDs): will greatly improve this widely-used tool for
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Figure 1. summary of potential solutions & space weathering processes
to lunar CSFDs illustrating gap in data over time
coverage. From [6].
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