Chairs: Axel Wittmann
Robert Flemming

8:30 a.m. Kenkmann T. * Sundell K. A. Cook D.
Exhumed Paleozoic Impact Crater Strewn Field Near Douglas, Wyoming, USA: Evidence from Microstructural Analysis, Satellite, and Drone Imagery [#1469]
Impact crater strewn fields are ephemeral and none documented to date are older than 10,000 years. Here we report on a newly discovered 280 Ma old strewn field.

8:45 a.m. Lambert P. * Alwmark C. Baratoux D. Bouley S. Brack A. et al.
Rochechouart 2017–Drilling Campaign: First Results [#1954]
Characteristics and initial description of the 18 holes and ~515 m of cores recovered (cumulative length) at Rochechouart.

Granulometric and Lithologic Line-Logging of Graded Suevite in the IODP-ICDP Expedition 364 Chicxulub M0077 Core: Evidence for a Rapid Seawater Resurge [#1221]
The graded suevite in the Chicxulub M0077 core has a genesis that includes initial slumping during peak ring formation followed by a forceful water resurge.

9:15 a.m. Poelchau M. H. * Ebert M. Schuster B. Kenkmann T. Karagöz O.
Structural Mapping of Granitoids in the Peak Ring of the Chicxulub Crater: Damage Distribution and Block Sizes [#2009]
A look at the structure of deformed granitoids from Chicxulub’s peak ring suggests block sizes of either 500 or 150 m. Feather features complicate the issue.

9:30 a.m. Ferrière L. Feignon J.-G. Leroux H. Koeberl C. *
What Do Shocked Quartz Grains in Impactites from the IODP Expedition 364 Drill Core Tell Us About the Chicxulub Impact Event? [#2238]
Investigated granitoids from the Chicxulub peak ring experienced shock pressures of ~12–15 GPa. PDFs were recrystallized during a post-shock thermal episode.

9:45 a.m. Wittmann A. *
Constraints for Emplacement Conditions of the Chicxulub Impact Crater’s Upper Peak Ring Section (747–617 mbsf) in IODP-ICDP Expedition 364 Drill Cores [#2994]
Petrography and zirconology of suevites and impact melt rocks from Chicxulub.

10:00 a.m. Walton E. L. * Timms N. E. Hauck T. E. MacLagan E. A. Herd C. D. K.
Evidence for Melting and Decomposition of Sedimentary Target Rocks from the Steen River Impact Structure, Alberta, Canada [#330]
We report evidence for impact melting of Devonian carbonates and evaporites, as well as post-impact carbonate decomposition at the Steen River impact structure.

10:15 a.m. Debono L. E. * Osinski G. R. Grieve R. A. F.
The Upper Contact Unit (Roof Rocks) of the Sudbury Igneous Complex, North Range, Sudbury Impact Structure [#2389]
A targeted study of the geological characteristics of the SIC’s Upper Contact Unit (North Range), and proposal for the new terminology of the roof rock lithology.
Preliminary Investigation of Shocked Carbonates from the Haughton Impact Structure, Devon Island, NU, Using X-Ray Diffraction and Rietveld Refinement [#3000]
Calcite and dolomite in shattercones from the Haughton impact structure show increased line broadening and decreased unit cell volume by XRD/ Rietveld refinement.

10:45 a.m. Caudill C. M. * Osinski G. R. Tornabene L. L. Longstaffe F. J.
Degassing Pipes at the Ries Impact Structure as an Analogue for Crater-Related Pitted Materials [#2765]
This study provides crater-wide characterization of degassing pipes at the Ries, applying modern analytical techniques to determine characteristics and origin.

11:00 a.m. Cavosie A. J. * Timms N. E. Ferrière L. Rochette P.
Former Reidite in Granular Neoblastic Zircon (FRIGN Zircon) from the Luizi Impact Structure and Proposed Pantasma Structure [#1816]
We report new occurrences of granular zircon that are the only terrestrial minerals that record both high-pressure and high-temperatures diagnostic of impact.

11:15 a.m. Drake S. M. Beard A. D. Downes H. *
A Meteorite Ejecta Layer at the Base of Mid-Paleocene Lavas, Western Scotland [#1061]
Ejecta layer is 61 Ma old and was recognized by presence of unmelted osbornite grains, barringerite, iron spherules, pdfs in quartz, and shocked zircons.

11:30 a.m. Bottke W. F. * Mazrouei S. Ghent R. R. Parker A. H. Gernon T. M.
What Really Happened to Earth’s Older Craters? [#1457]
Earth/Moon crater records are surprisingly similar. Both show big increases in impacts starting 250 Ma. Terrestrial craters > 650 Ma erased by “Snowball Earth.”