[W455]

Wednesday, March 21, 2018 TAURUS-LITTROW VALLEY II: 45 YEARS AFTER APOLLO 17 1:30 p.m. Waterway Ballroom 6

Chairs:	Barbara Cohen Nicolle Zellner
1:30 p.m.	Neal C. R. * <u>A New Look at Apollo 17 Basaltic Samples 45 Years On</u> [#1807] All whole-rock data for Apollo 17 basalts and glasses has been gathered and collated to gve a new look at Apollo 17 basaltic magma petrogenesis.
1:45 p.m.	Elardo S. M. * Shearer C. K. <u>The Mg-Suite Rocks from the Taurus-Littrow Valley: A Linchpin of Lunar Science</u> [#2656] The Mg-suite samples collected by Apollo 17 provide the basis for much of what we know about the early post-LMO Moon, making them incredibly valuable samples.
2:00 p.m.	Simon S. B. * Sutton S. R. <u>Valences of Ti, V, and Cr in Apollo 17 Basalt Pyroxene: Comparison of High-Ti and Very</u> <u>Low-Ti Basalts</u> [#1236] We report new valence measurements for A-17 VLT basalts and compare with results for A-17 high-Ti basalts and other lunar basalts we have analyzed.
2:15 p.m.	Warren P. H. * Tang C. P. <u>A VLT Mare Basalt Clast Within Highland Breccia Northwest Africa 10626</u> [#2060] In the unlikely context of a low-Th highland breccia, we found a 3-mm (but ultrafine-grained) clast of VLT, 1.2 wt% TiO ₂ , mare basalt, much like Apollo 17 VLTs.
2:30 p.m.	Nemchin A. A. * Whitehouse M. J. Snape J. F. Thiessen F. Pidgeon R. T. <u>U-PB Chronology of Apollo 17 Samples</u> [#1936] Application of U-Pb system for lunar chronology and its limitations are illustrated using Apollo 17 samples ranging from impact melt breccias to mare basalts.
2:45 p.m.	 Shearer C. K. * Neal C. R. Zeigler R. A. <u>Unopened Treasures in the Apollo 17 Sample Collection. A Perspective for Future Research</u> <u>and Missions</u> [#1253] We reveal hidden treasures within the Apollo sample collection and outline their value for future missions.
3:00 p.m.	Getzin B. L. * Weiss B. P. Wells R. A. Schmitt H. H. <u>Paleodirection of the Ancient Lunar Magnetic Field from Camelot Crater Basalts: Evidence for a</u> <u>Selenocentric Axial Dipole</u> [#1145] The magnetization direction of an Apollo basalt indicates that the ancient Moon generated a selenocentric axial dipole magnetic field.
3:15 p.m.	Garrick-Bethell I. * Miljković K. <u>Age of the Lunar South Pole-Aitken Basin</u> [#2633] Based on iSALE hydrocode modeling, we demonstrate that the South Pole-Aitken Basin is the only viable basin that could have excavated Apollo sample 76535.
3:30 p.m.	Weber R. C. * Dimech JL. Phillips D. Molaro J. Schmerr N. C. et al. <i>Thermal Moonquakes: Implications for Surface Properties</i> [#1497] Sunrise and sunset / Cracking, creaking, and rumbling / The Moon never rests.

- 3:45 p.m. Grimm R. E. * <u>The Apollo 17 Surface Electrical Properties Experiment Revisited</u> [#1096] The Surface Electrical Properties experiment was largely uninterpreted due to the modeling and inversion complexity. Modern analysis constrains the subsurface dielectric structure and loss.
- 4:00 p.m. Nagihara S. * Kiefer W. S. Taylor P. T. Williams D. R. Nakamura Y. <u>Apollo Heat Flow Experiments: Lessons Learned for the Future Lunar-Landing Missions</u> [#1470] We discuss lessons learned from the Apollo 15 and 17 heat flow experiments and make recommendations for additional measurements on future missions.
- 4:15 p.m. Siegler M. A. * Williams J. P. Molaro J. L. Paige D. A. <u>Temperatures at the Taurus-Littrow Valley: Legacy of the Apollo 17 Heat Flow Experiment</u> <u>and LRO Diviner</u> [#2491] The Apollo heat flow data from the Taurus-Littrow Valley represents our best geothermal measurement of another solar system body. Here's what it has taught us.
- 4:30 p.m. Feist B. * Petro N. E. Bleacher J. E. Niles P. *Documentation of Geologic Field Activities in Real-Time in Four Dimensions: Apollo 17 as a Case Study for Terrestrial Analogues and Future Exploration* [#2681] Apollo 17 represents a milestone of human exploration and presents an opportunity to demonstrate how to coordinate data documentation for future exploration.
- 4:45 p.m. Mathew M. T. * Slocum S. Sharp J. Garry W. B. <u>Creating Planetary Terrains in Virtual Reality for Science and Exploration: A Return to the Apollo 17</u> <u>Landing Site</u> [#2192] Apollo 17 landed in the Taurus-Littrow Valley 45 years ago and was the last crewed mission to the lunar surface, but we can now return using virtual reality.