IRON CORES AND MORE
3:00 p.m. Waterway Ballroom 5

Chairs: Cari Corrigan
Rhiannon Mayne

3:00 p.m. Chabot N. L. *
Composition of Metallic Cores in the Early Solar System [#1532]
New trace element partitioning results are used to determine the variability of the bulk composition of metallic cores in the early solar system.

3:15 p.m. Jordan M. K. * Young E. D.
Iron Isotope Constraints on Planetesimal Core Formation in the Early Solar System [#2853]
We determine the equilibrium Fe isotope fractionation between metal and silicate in differentiated meteorites and use the results to understand core formation.

3:30 p.m. Rubin A. E. *
Differences in Chemical, Physical, and Collective Properties Between Carbonaceous and Non-Carbonaceous Magmatic Iron Meteorites [#1034]
Outer-solar-system carbonaceous irons have higher refractory siderophiles (inherited from CAIs), longer CRE ages, and fewer members than non-carbonaceous irons.

3:45 p.m. Corrigan C. M. * McCoy T. J.
Early Oxidation and Late Reduction in High-Ni Irons [#2527]
We explore the relationships between IVB (and other high-Ni irons) and the Milton-South Byron trio, as well as formation conditions for these meteorites.

4:00 p.m. Young E. D. * Jordan M. K. Tang H. Shahar A.
Stable Isotopic Fractionation During Formation of the Earliest Planetesimals [#2551]
Fe isotopes show that the iron meteorites are the last vestiges of some of the earliest-formed planetesimals that carry the isotopic signatures of evaporation.

4:15 p.m. Humayun M. * Boesenberg J. S. van Niekirk D.
Composition of the IIIF Irons and Their Relationship to the Zinder Pallasite [#1461]
New data chemically links the IIIF irons and metal of the pyroxene pallasite Zinder, which deepens the provenance enigma between Mo and O isotopes.

4:30 p.m. Sanborn M. E. * Yin Q.-Z. Ziegler K.
Genealogy of IVA Iron and Pallasite Meteorites: The Implications for Planetesimal Differentiation Processes in the Early Solar System [#1780]
Identity and bulk composition of parent bodies of most iron meteorites and pallasites are unknown. Here we use 54Cr to unravel the genealogy of these meteorites.