CHONDrites AND THEIR COMPONENTS II: METALS AND ORGANICS

10:15 a.m. Montgomery Ballroom

Chairs: Queenie Chan
 Alexander Ruzicka

Spectral Classification of Ungrouped Carbonaceous Chondrites II: Parameters and Comparison to Independent Measures [#1753]
Trends in thermal IR spectral features and phyllosilicate fraction help classify the petrologic type and group of ungrouped CC.

10:30 a.m. Nevill N. * Clemett S. J. Messenger S. Thomas-Keprta K. L.
Coordinated Analysis of Organic Matter in Primitive Meteorites [#1077]
We refined chemical, isotopic, and contextual relationships between distinct organic species within meteorites, with implications for nanoglobule evolution.

10:45 a.m. Chan Q. H. S. * Zolensky M. E. Kebukawa Y. Franchi I. A. Wright I. P. et al.
Primitive O-, N-, and C-Rich Organic Vein Preserved in a Xenolith Hosted in the Metamorphosed Carancas Meteorite [#1191]
Made-up word: Ordcarvein — a carbon-rich vein in a carbonaceous clast hosted within an ordinary chondrite. In a way a bit similar to Turducken.

11:00 a.m. Nakanishi N. * Yokoyama T. Okabayashi S. Iwamori H.
Formation of Metal Phases in CR Chondrites: Implications from Highly Siderophile Elements [#1843]
We have measured HSE abundances in CR metals in order to constrain the formation of metal grains associated with chondrule formation.

The Oxidation State of Iron in Silicate Minerals from the Matrices of CO Carbonaceous Chondrites [#1917]
Determination of the Fe oxidation state in CO chondrite matrix silicates and variations with increasing thermal metamorphism.

11:30 a.m. Telus M. * Simon S. B. Howard D. L.
Fe-Ni Mobilization in Primitive CO Chondrites: Implication for Progressive Aqueous Alteration in the Parent Body [#2967]
CO3.0s show varying degrees of Fe-Ni mobilization that are likely a signature of parent body alteration.