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Introduction: Carbon monoxide (CO) is a valu-
able tracer of carbon and oxygen chemistry in proto-
planetary systems forming across the Galaxy. Large
(∼ 8- to 10-m) telescopes enable precise column den-
sity derivations from near-IR observations of the CO
rovibrational absorption bands; these in turn enable
detailed study of protoplanetary chemistry in a range
of young stellar environments, and insight into key
processes that could have affected the early solar neb-
ula [1-5]. Such observations have explored CO self-
shielding [3,5,6], supernova enrichment [4], and inter-
play between 12C16O ice and gas reservoirs [5], pri-
marily toward low-mass YSOs. Massive YSOs are a
critical complement to these, as they are bright (∼103

to 105 LSun) and can be observed in detail at a greater
distance from the Sun. For these targets, precise
abundances of gas-phase 12C16O and 13C16O (hereto-
fore, 12CO, 13CO) isotopologues can be compared to
other key carbon reservoirs observed along identical
lines of sight, rendering them particularly valuable in
evaluating protoplanetary and prebiotic carbon chem-
istry. Here we present results including our most re-
cent observations from the Keck telescope, extending
our study of carbon chemistry from the Galactic center
(GC) to the local solar neighborhood (RGC ∼ 8 kpc).

Observations and Methods: Observations pre-
sented here comprise a large survey using NIRSPEC at
high-resolution (R∼ 25, 000) on the Keck telescope.
Our data now include Galactic Center (GC) lines of
sight as well as massive YSOs and background stars.
Observations thus far span Galactocentric radii (RGC)
of ∼ 0.01 to 9.7 kpc, including the region near SgrA*
(the nearest star to the supermassive black hole) and
GCS 3 at the GC radio arc, which intercept dense
clouds and diffuse ISM near the GC [7]. Target lu-
minosities range from ∼ 1×103 to ∼ 4.7×105 LSun

(∼ 39 LSun for Elias 29). Fundamental (v = 1 − 0)
and first overtone (v = 2 − 0, for optically thin
12CO lines) rovibrational spectra were reduced using
our IDL pipeline. Figure 1 shows a portion of the
(v = 1 − 0) CO spectrum towards SgrA*, as well
as our image of the region taken with Keck-SCAM.
We measured equivalent widths (Wν) of the lines using
polynomial + Gaussian fits. For each target, the curve
of growth [8] was done in conjunction with a rotational
analysis to find the best-fit broadening parameter (b),
which in turn was used to derive NJ values for the
12CO and 13CO lines. Total molecular column densi-
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Figure 1: Data for the line of sight toward the region sur-
rounding SgrA*. Top: Keck-SCAM image. The boxed re-
gion shows the center of the line of sight. Bottom: Portion
of the CO (v = 1 − 0) rovibrational spectrum taken with
Keck-NIRSPEC. Example 12CO and 13CO lines are marked.
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Figure 2: Portions of the rovibrational spectra with line fits
for GCS 3, showing observed CO lines. Top: Fundamental
(v = 1 − 0) band, showing 13C16O lines. Bottom: First-
overtone (v = 2− 0) band with optically thin 12C16O lines.

ties were calculated using b and derived rotational tem-
peratures. The [12CO]/[13CO] were evaluated against
other carbon reservoirs for each target.
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Figure 3: GCS 3 analysis for the five total spectral lines ob-
served. Top: Curve of growth showing the best-fit b value (2
km/s), and other comparison velocity curves. Bottom: Ro-
tational analysis. Error bars are 1σ, EJ is the energy of the
Jth rotational state, k is the Boltzmann constant.
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Figure 4: Ratios of 12C/13C vs. RGC (kpc) from this study
(target names boxed at left, Keck data from this study marked
in box at right). Other data: CO gas, Infrared and CO gas,
cloud [3,5]; CO ice [10,11]; CO2 ice [9]; CO gas, (other)
YSOs [16]; CO gas, radio [12]; Local ISM [17]; Solar [18].

Results and Discussion: Portions of the (v =
1 − 0) and (v = 2 − 0) spectra for GCS 3 are
shown in Figure 2, including line fits. An example
curve of growth and rotational plot, here for GCS 3,

is shown in Figure 3. Ratios of [12CO]/[13CO]Gas

plotted against RGC for analyses thus far are shown in
Figure 4. High-resolution [12CO]/[13CO]Gas results
for low-mass YSOs (RGC ∼ 8 kpc) [5], carbon reser-
voirs of solid CO2 [9] and CO [10,11], and data from
radio observations of [12C18O]/[13C18O] for four of
our same lines of sight [12], are also shown. Most of
our targets show lower cold-gas-phase [12CO]/[13CO]
than [12CO2]/[13CO2]Ice, suggesting that CO2 may
not derive directly from CO, as assumed [13]. We also
find that the cold-gas [12CO]/[13CO] seems to follow
a general metallicity trend across the Galaxy, in con-
trast to the heterogeneity found for low-mass YSOs
at ∼ 8 kpc [5]. In targets with both warm and cold
CO gas, cold-phase [12CO]/[13CO] are lower, similar
to what is found for low-mass YSOs [5], suggesting
that there may be temperature-dependent CO fraction-
ation pathways that are similar across a range of envi-
ronments. The very high [12CO]/[13CO] for Elias 29
may be due to its complex radiation and velocity fields
[14]. The uniformly lower [12C18O]/[13C18O] from
radio observations as compared to our [12CO]/[13CO]
for the same lines of sight could be explained by the
higher photodissociation rate for 12C18O [15].

Conclusions: Our study of protoplanetary carbon
across the Galaxy thus far reveals cold CO following
a general metallicity trend, while warm CO may un-
dergo different chemical processing in a range of en-
vironments. Our results also suggest that CO2 may
not originate from CO. Complex interactions between
carbon ice and gas reservoirs, and low- versus high-
mass protoplanetary environments, should be included
in models exploring carbon chemistry in nebular evo-
lution. The upcoming NIRSPEC resolution upgrade
will greatly benefit this ongoing study.
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