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Introduction: The interiors of icy satellites with 

subsurface oceans are puzzling environments. How to 

produce enough thermal energy to prevent these oceans 

from freezing is one of the many unanswered questions 

revolving around worlds like Enceladus, Titan, and Eu-

ropa.  

It is well established that the action of tidal forces 

due to a satellite’s obliquity or eccentricity can provide 

non-negligible to significant amounts of heat to the ther-

mal energy budget of icy moons [e.g., 1]. These tides 

act to deform the entire satellite on a diurnal timescale, 

causing energy to be dissipated in the interior as heat 

through mechanical friction. Such dissipation occurs in 

the solid [eg., 2] and liquid regions of the satellite [e.g.,  

3-6].  

In this work, we investigate fluid dissipation in En-

celadus due to the action of tides. The presence of a rigid 

ice layer overlying the ocean is modelled using the 

membrane approximation of [7]. Dissipation is mod-

elled through either linear or quadratic drag. The former 

is applied to verify the numerical code against existing 

literature, and the latter is used to provide what is 

thought to be a more realistic approach to drag in turbu-

lent fluids. It should be stressed, however, that the dis-

sipation mechanism in icy satellite oceans is an un-

known. Quadratic drag can only be applied using a nu-

merical method.    

Numerical model: We numerically solve the La-

place Tidal Equations (LTEs) describing depth-inte-

grated momentum and mass conservation in a thin, ro-

tating fluid shell [7];  
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Here, 𝜂 is the ocean surface displacement about the 

equilibrium tide, ℎ is the ocean thickness, 𝒖 is the hori-

zontal velocity vector, and 𝛀 is the angular velocity of 

the satellite. Linear and quadratic drag coefficients are 

denoted as 𝛼 and 𝑐𝐷 respectively. The ocean density is 

𝜌𝑜 and the ocean pressure is 𝑃. 𝑔 is the satellite’s surface 

gravity and 𝑘2 and ℎ2 are the degree-2 tidal Love num-

bers. The gradient of the tidal potential, 𝑈2, is an applied 

force which is enhanced by Love’s reduction factor, 1 +
𝑘2 − ℎ2 [7].  

The ocean we model is global, has constant thick-

ness and is incompressible. For Enceladus the incom-

pressibility constraint is well justified given the small 

size of the satellite. [9] have shown that there are ex-

treme variations in the thickness of Enceladus’ ice shell 

(and ocean), casting doubt on the assumption of a con-

stant thickness ocean. Relaxing this assumption compli-

cates the problem significantly and can only be solved 

numerically. We shall investigate this in future work.  

To model the effect of an overlying ice shell on the 

ocean, we have incorporated the massless membrane 

approximation from [7]. We verify our model against 

[7] using linear drag, before exploring ocean dissipation 

with the more realistic quadratic drag model. 

A finite-difference model on a regular latitude-lon-

gitude grid was developed in [6] to solve the LTEs while 

neglecting the ice shell. For this work we employ a far 

more powerful and robust model that applies a finite-

volume solver over an unstructured geodesic grid (fig-

ure 1). The benefits of such a model will not be detailed 

here, but the new model has undergone the same testing 

as applied in [6] and has performed excellently. 

 
Figure 1. The icosahedral-geodesic grid. 

Simulations: A variety of simulations have been run 

for Enceladus, varying the thickness of the ocean from 

1km to 50km. For each ocean thickness explored, we 

use an ice shell thickness of 1km, 10km, and 25km. 

These values cover a range of shell thickness from that 

expected at the south pole, to the mean global thickness 

[9]. Firstly, we run simulations exploring only linear 

drag and compare to the results from [7], shown in Fig-

ure 2. 
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Figure 2. Dissipated energy in Enceladus' ocean as a function 

of the ocean and ice shell thickness for both the eccentricity 

and obliquity tides using 𝛼 = 10−6 s-1. Solid and dashed lines 

are semi-analytical solutions from [7], and circles and squares 

are numerical results from this work. The different colours 

represent different ice shell thicknesses. 

 
Figure 3. Same as figure 2, but for quadratic drag and with-

out the obliquity tide. 

Clearly, our numerical method accurately recreates the 

solutions of [7] using linear drag. The maximum error 

in our solution is below 5%, with the worst errors oc-

curring for the thickest oceans. There is no ocean thick-

ness where obliquity tide dissipation exceeds that of the 

eccentricity tide. 

  Results for the eccentricity tide using quadratic 

drag are shown in Figure 3. As quadratic drag depends 

more sensitively on ocean velocity, there is a much 

larger variation in ocean dissipation, and for the thickest 

oceans tidal dissipation from quadratic drag is negligi-

ble.  

Conclusions: We investigate tidal dissipation in En-

celadus’ subsurface ocean using a finite-volume 

method. Using the thin shell membrane theory of [7] 

and linear drag, our numerical model is shown to have 

excellent agreement with semi-analytical solutions [7]. 

Ocean dissipation using quadratic drag is also inves-

tigated using our model, as such a drag regime can only 

be applied numerically. As anticipated, in the quadratic 

drag regime we find that there is a much more extreme 

variation in ocean dissipation between thin and thick 

oceans than compared to the linear drag regime. For a 

nominal ocean thickness of 38km on Enceladus, ocean 

dissipation via quadratic drag is negligible. In the future, 

other modes of fluid dissipation must be considered to 

fully understand tidal heating in icy satellites oceans [8].  

Part of our future work will focus on a purely nu-

merical scheme to couple the physics between fluid 

ocean and overlying solid ice shell. Approaching this 

numerically will allow us to investigate the interesting 

scenario of a variable thickness ocean and ice shell of 

arbitrary thickness.   
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