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Introduction:  The low spatial resolution of ele-

ment maps based on gamma-ray spectroscopy (GRS) 

[1], makes it difficult to conclude on a process behind 

their distribution. For the different elements, several 

studies have proposed theories that could explain their 

distribution [1,2,3], but so far for most elements, there 

is not an agreement on one theory yet.  

This study aims to obtain a better understanding of 

factors that influence the element distribution by com-

paring GRS-element maps using data measured by the 

CRISM instrument in survey mode [4]. Infrared spec-

troscopy data from CRISM estimates the chemistry and 

mineralogy of the surface, which might relate to the 

GRS-element concentration. 

This comparison is performed by using Partial 

Least Square Regression (PLSR) [6], using CRISM 

summary products [4] as the predictors and the GRS-

elements - Fe, Th, K, Cl, H2O, Si - as the response 

variables. It is hypothesized that such a model works 

best for iron and water, because many of the summary 

products describe absorption features that relate to 

these elements [4,5].  

 Spectral interpreted mineralogy maps have been 

compared before with GRS-element maps [7,8]. The 

difference of these studies with what is done here is 

that the infrared data is used to understand the element 

distribution instead of creating new element maps. 

Method: Differences between gamma-ray and 

near-infrared spectroscopy must be taken into account 

before their data can be compared.  

Firstly, the difference in penetration depth of 

gamma-ray and infrared rays is significant. The gam-

ma-ray spectrometer measures the first few decime-

ters, while CRISM only measures the first microme-

ters. Therefore, when both datasets are compared, it 

has to be assumed that the upper layer (few decime-

ters) is homogeneous. This assumption does not apply 

when the surface is covered by dust. The dust cover-

age index (DCI) [9] is averaged for each GRS-pixel, 

where the threshold of a DCI > 0.96 [9] has been used 

to select the pixels that are assumed to be uncovered by 

dust.   

Secondly, there is a major difference in spatial 

resolution of both datasets, 200-500km for GRS [1] 

and ~200m for the 5*5o tiles of CRISM images meas-

ured in survey mode [4]. To tackle the difference in 

resolution, the statistics - such as the mean, median, 

standard deviation, number of pixels – of the CRISM 

summary products were calculated for each selected 

GRS-pixel. 

Processing of the CRISM-summary products is re-

quired before these can be used as predictors for the 

PLSR-analysis. First of all, only surface related sum-

mary products have been used for this analysis. Fur-

thermore, the pre-processing includes removal of outli-

ers, using normalization and standardization tech-

niques. 

To test the accuracy of the model, cross validation 

is applied. Two-thirds of the data was randomly select-

ed and used for model calibration, the other third was 

used as validation dataset. The averages and standard 

deviations of the PLSR results were calculated with a 

monte-carlo simulation of ten-thousand repetitions.  

When such a PLSR-model is created, defining the 

right number of predictor components is important. For 

example, too few components and the model is not 

describing enough variance, too much and the model is 

overfitting the data. The number of component based 

on the cumulative explained variance for each compo-

nent.    

Results and Discussion:  

Coefficients of determination 

For each element, the coefficient of determination (R2) 

has been calculated, to indicate the variance between 

the modelled values and original data. Both the calibra-

tion and validation data are summarized in Table 1.  

 

Table 1: Comparison of coefficients of determination 

 

In Table 1, it can be noticed that iron has the high-

est R2-value, followed by potassium and thorium. 

However, chlorine, silica, and water, have low R2-

values for both calibration and validation datasets. 

Especially for water this was not expected, since there 

are many CRISM-summary products that describe 

water features in the near-infrared [5]. Differences can 

be observed in standard deviations between the cali-

 Fe K Th Cl Si H2O 

Number of 

components 

5 7 4 10 7 12 

Calibration       

R2  61% 56% 44% 32% 39% 41% 

R2-error  0.6% 0.3% 0.6% 0.2% 0.3% 0% 

Validation       

R2  58% 51% 41% 23% 33% 33% 

R2-error  4% 5% 4% 4% 4% 4% 
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bration and validation groups, with higher accuracy in 

the validation dataset. 

Figure 1: Scatter plot of the modelled values versus the 

original data, grouped per lithology 

 

In figure 1 the modelled Fe concentration is com-

pared with original concentration. It can be observed 

that the regression line plots close to the identity line. 

Figure 1 shows that the model works fine to distinguish 

the different geological units [10], with higher concen-

trations of iron in the lowland area’s and lower concen-

trations in the highlands and volcanic units.   

Regression coefficients 

To test how different summary products contribute to 

the final model, the regression coefficients for each 

product were compared. As an example, figure 2 shows 

the regression coefficients for the PLSR-model for 

iron. As can be seen, the summary products have been 

grouped. This is based on hierarchical cluster analysis, 

after calculating the correlation coefficients.  

In figure 2 it can be noticed that mainly the sum-

mary products that relate to mafic minerals (group 1 in 

Figure 2), have high regression coefficients, which 

means these contribute most to the final model. The 

regression coeffients of summary-products related to 

hydrated minerals are relatively low. The same applies 

for the dust related summary products. Current work 

focuses on the interpretation of the regression coeffi-

cients for each element. Understanding the relationship 

between the high regression coefficients and the ele-

ments could explain the spatial variance of the element 

concentration.     
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Figure 2: Beta-values of the linear regression model of iron. Bars present the mean, error bars the standard devia-

tion of the variation after thousand repetitions 
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