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Introduction: Water ice in the interior of asteroids
and Near Earth Objects (NEOs) is of scientific and re-
source exploration interest [1, 2]. Airless bodies gradu-
ally lose their ice to space by outward diffusion through
the porous material, and the time-scale of this desiccation
determines whether or not a body that initially contained
ice still retains some of it in its interior. To quantify this
process, we obtain analytic solutions for 1) the latitude-
dependent temperature field inside a fast-rotating and
thermally equilibrated spherical body, and 2) the time-
dependent depth to retreating ice in a spherically aver-
aged sense, with the effect of latent heat incorporated.
The results provide insight for a wide range of scales and
parameters. Previously, several numerical and simple an-
alytical models have been developed for icy bodies [3].

Temperature in body interior: A few diurnal skin
depths below the surface, the temperature varies little
throughout a solar day, and below a few seasonal skin
depths, it varies little even throughout an orbit around
the sun. In the interior, the temperature is cylindrically
symmetric around the rotation axis of the body. It is as-
sumed that the thermal conductivity is spatially uniform,
so the temperature obeys the 2D Laplace equation.

For a body in thermal equilibrium, the total radial
heat flux through a sphere around the center must van-
ish, at any depth. Hence the temperature averaged over
the surface of the body, T̄ , is the same as the temperature
at the center of the body. The solution can be written as
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where a` are coefficients determined by the boundary
conditions, R is the body radius, r is the distance from
the body center, P` is a Legendre polynomial of degree
`, and θ is the zenith angle or co-latitude.

Fast rotator model as surface boundary condition.
The fast rotator model [4] assumes the temperature
does not change with local time. When the body has
zero axis tilt, the surface temperature is proportional to
(sin θ)1/4. In this case, the average surface temperature
(area-weighted) is about 1% lower than the effective tem-
perature,
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π1/4
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where Γ is the Γ-function. If the only source of energy is
the sun, then it is always the case that T̄ ≤ Teff .

Solution for interior temperature. We analytically
determined the coefficients a` from the surface temper-
ature. The first few are a0 = 1, a2 = −5/26, and
a4 = −9/104. Figure 1 shows the interior temperature
distribution. The polar regions are very cold, and the
temperature quickly homogenizes with depth.
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Figure 1: Temperature distribution in the body interior
as a function of r and θ, based on 20th order analytic
solution. The color scale shows T/T̄ . The contours show
T/T̄ = 1 (white) and T/T̄ = 0.9 (black).

T̄ determines the interior temperature, and depends
on the orbital geometry and the physical properties of the
body. Numerical thermal modeling for a range of axis
tilts and thermal inertias suggests the fast rotator with
zero axis tilt represents a hot end-member case in terms
of T̄ .

Ice retreat for spherically averaged model: For
constant temperature, the time to complete desiccation
tD is given by

tD =
R2

6D

ρi
ρs(T̄ )

(3)

where D is the vapor diffusivity of the asteroid interior,
ρi the density of ice, and ρs the saturation vapor density.
The radius of the ice-rich interior (i.e. the location of the
ice table), ri(t), is the solution to a cubic equation and
given by
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Figure 2 shows this universal solution. The ice has re-
ceded to half the body radius at t = tD/2. Half the ice
volume is lost after 11% of the total desiccation time.
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Figure 2: Time evolution of ice retreat in a spherically
averaged model according to eq. (4). The retreat is also
shown in terms of relative volume retained (dash line).
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Figure 3: Desiccation time tD in Earth years as a func-
tion of surface temperature T̄ for pore size ζ = 1 mm and
body diameters 2R, according to eq. (3). The dash lines
are desiccation times with the latent heat effect included.

tD depends on body sizeR, body temperature T̄ , and
vapor diffusivity D. The vapor diffusion coefficient D
depends on pore size (related to grain size) ζ, which in
turn is related to grain size. Figure 3 shows desiccation
times as a function of T̄ for two body diameters.

The latent heat consumes energy at the ice inter-
face. Since temperature and vapor density both obey the
Laplace equation in the same geometry, the solutions for
the heat flux and the vapor flux are geometrically simi-
lar. It turns out that the temperature difference between
the surface and the ice table depends on neither R nor ri,
so the ice table remains at about the same temperate as it
retreats.

Application to specific populations: The Beagle
family has an estimated age of 10 Ma and is centered at

semi-major axis a = 3.157 AU [6]. For ζ = 1 mm, the
size threshold for complete desiccation is a diameter of
26 m. For 0.11tD, when half the ice is lost, the threshold
is 80 m. The known Beagle family members are signifi-
cantly larger than that, so they should have retained most
of their ice.

Most Main Belt Comets (MBCs) fall in the range
3.0–3.2 AU [7]. At 1 km size, typical for MBCs, their
desiccation time scale exceeds the age of the solar sys-
tem.

Most 100 m size objects are ejected over 100 Myr
due to the Yarkosky effect [8]. Objects of this size
and age retained some of their ice at temperatures be-
low about 170 K, which includes all bodies beyond a &
2.7 AU, and hence the outer main belt.

Outside of a = 2.5 AU (middle and outer belt), all
bodies larger than 10 km were able to retain ice in their
interior over the age of the solar system (if they formed
with ice and the ice lasted beyond the period of radio-
genic heating).

Many NEOs originate in the main belt, and especially
from the inner main belt (a < 2.5 AU) [9]. Nearly 103

NEOs are larger than 1 km, but most are smaller. For a
NEO of a km or less in size to have retained ice in its in-
terior, one of the following conditions has to be met: 1) a
semi-major axis in the outer belt or beyond, 2) a mantle
of very low thermal inertia, which lowers interior tem-
perature, 3) a young age due to a recent break-up from
an ice-rich body, or 4) a stable and moderately small axis
tilt would maintain cold polar regions.
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