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In the mini-electron probe (“EPMA”) flight con-
cept [1] electrons are drawn out of an addressable-
element carbon nanotube (“CNT”) field emitter array
by the cathode/grid extraction voltage, then accelerated
by a miniature electrostatic lens stack into a plane-
tary/asteroidal/cometary surface, thus exciting X-ray line
emission characteristic of the elemental composition of
the surface. The X-rays can then be measured by a sil-
icon drift detector similar to those used in laboratory
energy-dispersive spectroscopy (EDS) and analyzed us-
ing standard EPMA techniques to give the surface com-
position of the region illuminated sequentially by each
electron-beam spot (100 µm). In this way, a grid of e-
beam spots activated in sequence will non-destructively
produce a fine-scale map of elemental composition.

The focus of this abstract is the technical develop-
ment of the addressable CNT-based emitter array.
Cathode Design: The critical new technology enabling
the mini-EPMA instrument is the addressable array of
field emitters. Each field emitter is a carbon nanotube
“forest” grown in a circular 100 µm region on a wafer
substrate. The key challenge was to achieve robust nan-
otube growth on a wafer patterned for electrical address-
ability.

Two candidate catalysts and several combinations of
silicon-on-insulator (SOI) or quartz substrates with con-
ductive metal layers were tested. Nanotube growth had
been demonstrated on unpatterned wafers of both types.

Several candidate designs using dielectric wafers
proved unsuitable for fabrication for various reasons, in-
cluding formation of metal silicide layers during nan-
otube growth producing a surface incompatible with wire
bonding and inhibition of satisfactory nanotube growth
on the metal conductive traces, most likely caused by al-
loying of the metals with the catalyst. Examples of un-
successful growth are shown in Fig. 2.

Fig. 2: Examples of unsatisfactory CNT emitter growth and
adhesion. Growth is observably stunted in the centers of the
emitters and bundles of nanotubes are visibly detached from
the substrate.

Fig. 1: Cartoon diagram of electron source operation (not to
scale)

Fig. 3: SEM micrographs of a successful 10x10-element car-
bon nanotube cathode prototype. Each circular “forest” of nan-
otubes serves as a field emitter when addressed, providing elec-
trons to the e-gun in order to stimulate characteristic X-ray
emission from the target material. This cathode shows con-
sistent growth, good CNT density within forests, and good ad-
hesion of the CNTs to the substrate.

In the successful design (Fig. 3) the CNT emitters
have been grown on the surface of a patterned SOI wafer.
Final emitter height can be varied by changing param-
eters of the growth conditions. The conductive silicon
layer carries the signal to the entire row of nanotube
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emitters. Grooves etched through the silicon layer prior
to growth provide row-wise electrical isolation. Outside
the growth region, metal leads were deposited for each
row to facilitate wire bonding (Fig. 4).

Emitter Testing: Integrating a single cathode with an
extraction grid to implement individual emitter address-
ing is labor intensive and relatively large numbers of
cathodes can be grown on a single wafer with approx-
imately the same effort required to grow one cathode.
Thus, we have fabricated a custom test fixture (Fig. 5)
in order to apply the extraction voltage across an entire
chip simultaneously and measure the resulting current.
This full-chip testing serves as a screening step to ensure
that only working cathodes are selected for grid integra-
tion. We also plan to apply the full-chip current emission
results to correlation of field emission performance with
characteristics such as emitter height, morphology, uni-
formity, and other qualities observable via electron mi-
croscopy or Raman spectroscopy; and also to evaluate
degradation mechanisms (e.g. nanotube erosion via sput-
tering [2] or nanotube detachment from the substrate [3])
in cathodes with observed reductions in performance.

Fig. 5: Test fixture for whole-chip cathode activation. Twelve
cathodes at a time can be loaded although only one at a time is
activated.

At time of submission, three cathodes had been tested
continuously at extraction voltages of -750 V for >14
hours (overnight) while maintaining acceptable electrical
emission (here, > 5 µA). Three additional cathodes had
been tested at constant voltage over 2 hour time periods.
None of these have yet been tested to failure. Lifetimes
of hundreds of hours have been demonstrated for CNT
emitters in the literature (e.g., [4])

Fig. 4: View of the integrated cathode/grid package. The nan-
otube array emitters (Fig. 3) sit underneath the apertures of the
extraction grid (top center). The horizontal wire bonds enable
addressing of the cathode rows, whereas the vertical bonds ad-
dress the grid columns.

Integration with extraction grid and fan-out board:
The cathode is electrically mated with the extraction grid
and fan-out board (Fig. 3) via wire bonding. Like the
cathode, the extraction grid is made from an SOI wafer
using microfabrication techniques. The grid column el-
ement is brought up to the extraction voltage relative to
the active row of the cathode, thus addressing a single
element of the CNT emitter array.
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