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Introduction:  Because they are elementary bricks 

of planets during the early formation of the Solar Sys-

tem, asteroids have been main targets of numerous 

space missions such as NEAR Shoemaker [1] and 

Hayabusa [2], and still are with missions OSIRIS-REX 

[3] and Hayabusa 2 [4] arriving at their targets this 

year. However, little is still known about the internal 

structure and morphology, as only a few observables 

are available from Earth such as radar measurements, 

or gravity field measurements done by spacecraft dur-

ing rendezvous missions. Here, the present work aims 

at determining the gravitational potentials of asteroids 

using the finite element method in order to compare 

them with the in-situ gravity field measurements but 

also in order to study tidal displacement and stress and 

thus analyse the possibility of in-situ passive seismic 

experiments at their surface.  

Previous asteroid geodesy studies: The gravita-

tional field of Earth is very well determined thanks to 

space missions like GRACE [5]. High precision mod-

els, taking into account ellipticity and local inhomoge-

neities have been established matching the measured 

gravity field, and then used to calculate deformations 

of the Earth [6,7].   However, these methods are well-

suited for almost spherical bodies, and as such are not 

suited to highly non spherical asteroids with many in-

homogeneities, voids and porosity [8]. These specific 

properties asteroids mean that there is a need to devel-

op a specific tool to study them. 

Asteroid stress and seismicity:  First studies of 

tidal deformation of simplistic spherical asteroids [9] 

showed that local material failure might happen at the 

surface of a binary asteroid (Fig.1), and as a conse-

quence that tidal quakes might occur, thus possibly 

allowing a passive seismic experiment. While global 

modelling of asteroids and global stress analysis have 

already been done [10,11], we want to study local fail-

ure. For this reason and the other mentioned above, our 

choice was to create a tool using the finite element 

method in C++/FreeFem++ [12]. The finite element 

method gives us freedom in discretization, mesh refin-

ing, body shapes and allows us to study local stress for 

failure. The theory used is the elastic deformation of a 

self-gravitating body, as used in Dahlen and Tromp 

1998 [13]. This method solves the Poisson equation 

with the impulse equation and mass conservation, but 

without spherical symmetry meaning that it can be 

applied to most asteroids. 

 
Fig.1. Depth of material failure depending on the angle 

of friction and internal structure of the asteroid (68503) Did-

ymoon. The steps are due to the discretization of the models. 

[9] 

 

 

Validation:  The code has been validated in two 

stages: first, the validation of the solution of the Pois-

son equation giving the gravitational field, and then the 

validation of the coupled system of the Poisson equa-

tion for self-gravity with the impulse equation for a 

deformed elastic body. 

Gravitational field.  Calculations of the gravita-

tional field have been performed for a nonhomogene-

ous sphere and triaxial ellipsoid (Fig. 2.) and then vali-

dated via comparison with the analytical formulae 

from [14,15]. This allows us to apply this part of the 

code for the tidal displacement calculations, but also 

by itself for applications on asteroids whose gravity 

field was measured such as asteroid Eros [1,16]. 

Tidal displacement.  Using the previous results 

from the gravitational equation, coupled with the im-

pulse equation for an elastic body under a tidal poten-

tial from a main body, a moon or the Sun gives us the 

tidal displacement inside the studied body. Using the 

case of the Earth’s solid tide from the Moon using the 

analytic formulae in a case of an incompressible ho-

mogeneous spherical Earth in [15] we were able to 

validate the code’s calculations  (Fig. 3.).  
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Fig.2. (a) Modelisation of a triaxial ellipsoid for calcula-

tion of its gravitational field. The large outer sphere is where 

the boundary condition is calculated for the Poisson equa-

tion. (b) Comparison of the gravitational potential of the 

triaxial ellipsoid with in deep blue the code result, in red the 

analytical value and in light blue the error between. The error 

stays below 1% inside the body with low computation re-

sources due to the low mesh resolution. 

 

 
Fig.3. Tidal deformation of an elastic self-gravitating 

homogeneous incompressible spherical Earth under the M2 

tidal potential from the Moon. Values matches analytical 

results from [16]. 

Discussion:  Ongoing application of this code on 

the asteroid Eros for gravity field calculations and on 

the Martian moon Phobos for tidal deformations will 

be presented at the 49
th

 LPSC conference. 
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