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Introduction: Low reflectance regions, known as 

dark mantle deposits (DMD), exist on the lunar surface, 

and it is very important to examine the global distribu-

tion. While smaller DMDs can be located based on the 

accumulating high resolution lunar images, the auto-

matic determination of small DMDs may be hindered 

by the shadows in Kaguya’s Multiband Imager (MI) 

images [1]. This study aims to enable the detection of 

smaller DMDs on the global lunar surface using the MI 

images with masked shadow regions. A method for the 

detection of shadow regions prior to the locating of the 

DMDs is considered herein.  

Initially, we performed a simulation of solar illumi-

nation using the SLDEM [2] data corresponding to an 

MI image. Many dark regions that appear as shadows 

exist in the MI image; however, shaded (sunless) re-

gions are almost entirely absent in the simulation re-

sults. This suggests that the regions that appear as 

shadows are not the actual shadows cast by being hid-

den from sunshine but are rather areas that have a rela-

tively low reflectance compared to the surrounding 

area owing to the difference in the local solar incidence 

angle. However, these regions often exhibit abnormal 

spectrum patterns. Therefore, the regions that appear to 

be shadows should be excluded from DMD candidates. 

In this study, these regions are treated in a similar 

manner as the actual shadows. 

For detecting the shadows on the pixel basis, the 

shadows should be directly detected from the MI imag-

es. Generative Adversarial Network (GAN) is a deep 

learning method recently used for style transfer, seg-

mentation, or super resolution in the field of computer 

vision. The GAN comprises two networks: the Genera-

tor and Discriminator. The Generator is trained to gen-

erate realistic fake images that cannot be distinguished 

from real images by the Discriminator, whereas the 

Discriminator is trained to detect the fake images gen-

erated by the Generator.The conditional GAN (cGAN) 

[2] is used for detecting shadows herein. The ability to 

control the output image of the Generator by adding an 

observed image to the input data of the networks is an 

advantage of cGAN. The Generator of normal GAN 

learns a mapping from the random noise vector, and 

the Discriminator learns from a either real or fake im-

ages. Conversely, the Generator of cGAN learns a 

mapping from the observed images and the random 

noise vector, and the Discriminator learns from the 

pairs of observed image and either real or fake images. 

Method: Pairs of MI images and Ground Truth 

(GT) shadow masks were prepared for cGAN learning. 

Four MI images (approximately 3000 × 1200 pixels) 

are chosen at a high-latitude region, which had low 

solar elevation angles, because these images comprise 

many shadow regions. GT shadow masks are binary 

images, wherein 1 and 0 represent the shadow non-

shadow regions, respectively. The GT shadow masks 

were generated by determining the thresholds for each 

MI image and modifying the masks manually. The ac-

curacy of the shadow masks predicted using cGAN was 

affected by the accuracy of the GT shadow masks. 

Therefore, the GT shadow regions are excessively se-

lected to decrease under-detection for the predicted 

shadow masks. 

 
Figure 1: Structure of cGAN. White region repre-

sents a shadow region and black represents non-

shadow region in GT and Predicted shadow masks, 

respectively. 

 

Figure 1 shows the network structures of cGAN. 

The input data for the Generator is a patch cut out from 

the original size of MI images into 256 × 256 pixels, 

and the output is a predicted 256 × 256 shadow mask 

corresponding to the input data. The MI image has nine 

bands, and all bands are input into cGAN. The final 

layer (output function) of the Generator is softmax; 

therefore, the predicted shadow mask has a probability 

distribution of whether a given pixel is a shadow. The 

input data for the Discriminator is a pair of an MI patch 

and a GT shadow mask patch or an MI patch and pre-

dicted shadow mask patch (the patch size is 256 × 256 

pixels). The Discriminator predicts whether the pair is 

real or fake.  

We prepared 500 and 172 pairs of MI and GT 

shadow mask patches for cGAN training, and valida-
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tion, respectively. The training dataset includes rotated 

patches for data augmentation. An epoch is the training 

cycle that includes all training data, and our approach 

is trained for 200 epochs. 

Results: For testing, two regions, which include 

Anderson-E and F areas, were chosen because Ander-

son-E and F have relatively small DMDs (the areas of 

Anderson-E and F are approximately 81 and 31 km
2
, 

respectively) [3]. Predicted shadow masks were gener-

ated using the trained Generator model. In the testing, 

256 × 256 patches of the original MI image sampled 

with stride 128 pixels are prepared. In the overlapped 

area, the average probability is calculated. The shadow 

detection results corresponding to the original MI im-

age form a binary image (threshold 0.5) with 1 and 0 

for shadow and non-shadow regions, respectively. Af-

ter this shadow detection, we would pick up the DMDs 

as the darkest region in the image. 

Figure 2 shows the results of shadow detection and 

DMD detection in Anderson-E (left column) and F 

(right column) areas. In the results of shadow detection 

in these two regions, most of the shadow regions were 

detected (Figure 2(B)). Red areas in Figure 2C corre-

sponds to the area with the reflectance smaller than 

0.115. Around Anderson-E, many shadow regions were 

misclassified as DMDs (Figure 2(C)), whereas in the 

results from the shadow masked MI image, these shad-

ow regions were removed (Figure 2(D)). However, in 

the results for Anderson-F (Figure 2, right column), 

DMD were not detected because almost all DMDs 

were detected as shadow regions. 

Discussion and Conclusion: Based on these re-

sults, it is conceivable that the shadow detection meth-

ods using cGAN are useful for detecting DMDs with 

the sizes typical of the Anderson-E area from the shad-

ow masked MI image. However, the DMDs with the 

size typical of the Anderson-F could be missed. The 

influence of the GT shadow masks is an origin of this 

difference. In this study, we excessively detected the 

shadow regions for the GT shadow masks. It is likely 

that the training dataset included shadow regions, 

which have similar size and shape to the Anderson-F 

sized DMDs. Additionally, for decreasing over-

detection, the threshold for detecting DMDs was set to 

a relatively low value. If the threshold higher than 

0.155 is used, around Anderson-F regions are detected 

as DMD, but the shadow regions that were not re-

moved by the shadow masks are misclassified as 

DMDs. Thus, appropriate adjustment of the threshold 

is necessary. 

Furthermore, the training dataset was generated 

merely from the four MI images obtained at the high-

latitude region. Therefore, the variety of the shadow 

patterns is limited. While applying this method to the 

global lunar surface, this limitation will cause over- or 

under-detection of DMDs. For the accurate detection 

of the shadows, which have various sizes or shapes, 

and for the detection of smaller DMDs, modifying and 

increasing the GT shadow masks and improving the 

network structure of would be necessary.  
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Figure 2: Results of shadow detection and DMD 

(Anderson-E: MIA_3C5_AA_03695N169E1738SC, 

Anderson-F: MIA_3C5_AA_03695N158E1738SC). 

The left and right columns show column respectively 

shows Anderson-E and F results. (A) Original MI im-

ages; (B), (C), and (D) respectively indicate results of 

shadow detection by cGAN (yellow is detected shad-

ows), DMD detection via simple thresholding from 

original MI images, and DMD detection after shadow 

removal via cGAN (red is detected DMDs).  
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