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GEOCHEMICAL CONSTRAINTS ON THE COMPOSITION OF THE MARTIAN CORE. W. van
Westrenen and E.S. Steenstra, Vrije Universiteit Amsterdam, the Netherlands (w.van.westrenen@vu.nl).

Introduction: Accurate constraints on the abun-
dances of elements lighter than Fe in the Martian core
feed into models of the Martian core dynamo, the con-
ditions under which the Martian core formed (which is
linked to the existence and depth of a magma ocean)
and the overall volatile element inventory of Mars.
Current estimates for the sulfur (S) content of the Mar-
tian core range anywhere between 1 and 25 wt% S,
based on geochemical and geophysical constraints [1-
8]. Other possible light elements in the Martian core
include O and C [9-11].

Here, we provide quantitative constraints on the
distribution of S and other (light) elements (Ni, O, C)
in the Martian interior using mass balance calculations,
combined with published models that predict their
high-pressure metal-silicate partitioning behavior [12-
15]. We explore a wide range of plausible Martian bulk
compositions, core masses and pressure (P) - tempera-
ture (T) scenarios [1,2,5-7]. We also assess the bulk
volatile element inventory of Mars by consideration of
the metal-silicate partitioning behavior of Se and Te.
Ref. [3] suggested that the S/Se and Se/Te values of the
Martian mantle most likely represent core-mantle equi-
librium, instead of reflecting a late veneer. We quanti-
tatively explore to which extent Martian mantle Se and
Te abundances may represent a signature of core for-
mation, using revised models for their metal-silicate
partitioning based on recent experimental data from
our lab [16] combined with previous work [17].

Methods: We adopt a simple mass balance ap-
proach with which the amount of element i in the Mar-
tian core can be calculated [18]:

Ci‘ore = Cli)ulkMars/ [xmre + (1 - xcore)/D(i)]

1)
Clinantle = Cli)ulk Mars/ [xmantle + (1 - xmantle) * D(i)] (2)

where CL . uer Clorer @Nd Cl . warsar€ defined as con-
centrations by weight of element i in the Martian core,
mantle and bulk Mars. Parameter x is the Martian core
or mantle mass fraction and D is the metal-silicate par-
tition coefficient (Wt% i in metal/wt% i in silicate). To
predict Do s cni Values as a function of P-T, we used the
models of refs. [12-15]. We explore a Martian core
mass range of 21-28 % [1,2,5-7] and P between 0-25
GPa and corresponding liquidus T. Liquidus T were
calculated between 0-25 GPa using Ty (K) = 1835 +
35*P (GPa) [1]. Models for Dse e Were obtained by
parameterizing exisiting data [16,17] to:

1 P -
logDsere =a + bf temt dlog X§licate _1ogCg + e log(1 — xmetal)

©)]
where T is in K, P is in GPa, xiilicate js the molar frac-
tion of FeO in the silicate melt, ¢, is the sulfide capaci-
ty which incorporates the effect of fO, on Se and Te
partitioning [12] and Xsis the molar fraction of S in the
metal phase. Constants a-e were derived using multi-
linear regressions. It was found that FeO, P, x®etal are
the most important parameters affecting Dgete, in
agreement with previous work [16,17]. Activities of the
light elements for each modeled core composition were
calculated using the metal activity calculator [19]. The
c; and xglicate yalues, as well as fO,, were re-
calculated for each scenario considered.

Results: Quantitative assessment of the expected
partitioning behavior of O suggests the Martian core is
O-poor (<0.2 wt%), virtually independent of P-T and
bulk composition (Fig. 1) Only at unrealistic high P
(>20 GPa) or extremely oxidizing conditions (>20 wt%
FeO in the Martian mantle) do O concentrations in the
Martian core become significant. The minor role of O
in the Martian core agrees with previous findings
where only O was considered [9,10]. In case of C and
Ni, their siderophile nature results in their near-
complete (>99%) partitioning into the core, independ-
ent of P-T conditions, core mass or composition. The
Ni and C contents in the Martian core for the various
core masses and bulk Mars compositions range be-
tween 7.3+0.5 wt.% and 1.2+0.2 wt.%, respectively
(Fig. 1). Fig. 2 shows the computed S concentrations in
the Martian interior for a shallow (10 GPa) and deep
(20 GPa) Martian Magma Ocean (MMO) scenario for
the previously discussed core compositions. The S con-
tent of the Martian core is predominantly a function of
the assumed bulk Mars S content and to a lesser extent
core mass (Figs. 1,2). Variables P, T and core compo-
sition do not significantly change estimated Mars core
S contents.

Consideration of the four proposed bulk composi-
tions, which significantly vary in bulk S content (2.2-
4.8 wt%) and core mass (21-28%), constrain the per-
missible S content of the Martian core to 13.7+3.4
wt%. If we constrain the Martian mantle S abundance
to 360+120 ppm [3] and loosen bulk Mars S con-
straints, a 21 mass% Martian core should contain at
least 22 wt% S and could even consist of stoichio-
metric FeS if it formed in a deep MMO. This is re-
duced to 22.5+7.5 wt% S for a 28 mass% Martian core.
A 21 and 28 mass% Martian core formed in a shallow
MMO vyields even higher S contents (>26.2 wt% up to
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stoichiometric FeS). We note that the bulk Mars abun-
dance of >4.3 wt% S calculated using the Martian man-
tle S estimate of ref. [3] is significantly higher than the
S abundances found in any major chondrite group [20]
(Fig. 2). Altogether, our results demonstrate that the S-
rich nature of the Martian core is robust given current
geochemical estimates of S in the Martian mantle and
the partitioning behaviour of S.
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Fig. 1 S, O and C concentrations in the Martian core calcu-

lated using the model from [12-15] for the four bulk compo-

sitions considered (WD94 = [7], LF97 = [5], S99 = [6]).
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Fig. 2 S concentrations in the Martian interior calculated
using the model from [12]. Horizontal shaded bar represents
estimated S mantle abundance from WB17 [3].

We assessed to which extent Se and Te are ex-
pected to partition into the Martian core during core
formation. Fig.3 illustrates that the estimated Martian
mantle depletions of Se and Te [3] can be reconciled
with their preferential partitioning into the Martian
core under a wide range of P-T conditions if S is the
dominant light element in the Martian core. This agrees
with [3] who proposed that the Se and Te abundances
in the Martian interior reflect Martian core-mantle
equilibrium. We conclude that the mantle depletions of
Se, Te indeed appear to be mostly set by core for-
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mation processes. This suggests a minor role of a late
meteoritic veneer and/or partial volatilization and/or
incomplete condensation in Mars’ early history, at least
in terms of Se, Te.
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Fig. 3 Calculated Ds,7e values as a function of the molar
fraction of S in the Martian core. Horizontal shaded bars
represent required log D value ranges for different bulk
Mars Se or Te concentrations [5,6]. Different lines represent
different core-mantle equilibration depths.
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