Selected Results & Conclusions

- Prebiotic M-dwarf planets have much less surface UV than planets around Sunlike stars. It is uncertain whether UV-dependent prebiotic chemistry can proceed on M-dwarf planets.
- Laboratory studies of the reaction rates of putative prebiotic photochemistry as a function of irradiation level are required to determine:
 - Can UV-dependent prebiotic chemistry proceed on M-dwarf planets?
 - If not, can M-dwarf flares compensate for low steady-state UV? If so, there is reason to prioritize active M-dwarfs in biosignature searches.
- Such measurements are also relevant to early Mars, which may have been low-UVA due to atmospheric dust.
- If laboratory measurements suggest that UV-dependent origin of life scenarios cannot proceed around M-dwarf planets, then biosignature searches on such worlds provide an opportunity to test origins-of-life hypotheses.

For More Details:
- https://github.com/sukritranjan/

Selected Acknowledgements

We thank our colleagues for valuable discussions and insights regarding planetary atmospheres and prebiotic chemistry, including P. Remer, A. Fahnert, J. Esposito, T. Zold, C. Magnani, S. Rughmee, A. Segura, E. Schwantesman, Y. Zhang, R. Kelly. We thank the A. Segura, K. France, S. Engle, C. John-Krull, R. Osten and S. Rugheimer for sharing their data with us. SR and DDS gratefully acknowledge support from the Simons Foundation Collaboration on the Origin of Life, grant nos. 290603 and 498082. RDN acknowledges funding from NASA-HW Grant NNX16AF88G.