Space Weathering Trends on the Moon Based on Statistical Analysis of Spectral Parameters

Kateřina Chrbalková\(^1\), Tomáš Kohout\(^2,3\), and Josef Šurech\(^1\)

\(^1\)Astronomical Institute of Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
\(^2\)Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2a, Helsinki, Finland
\(^3\)Institute of Geology, The Czech Academy of Sciences, Rozvojová 269, 165 00 Prague 4, Czech Republic

Space weathering causes continuous changes of spectral and compositional properties of airless planetary bodies. The main changes include:

- albedo reduction,
- diminution of mineral absorption bands,
- and slope reddening.

Individual components causing space weathering are:

- solar wind,
- galaxy radiation, and
- impacts of small bodies, so-called microimpacts.

Currently, the way each of these three effects influences the final state of a weathered surface remains unknown. In this research, we study spectra of lunar swirl areas on the Moon, where different contribution of these effects, due to locally higher magnetic field, is expected to uncover varying trends.

Fig. 1: Selected spectra in Reiner Gamma swirl.

Our data come from the Moon Mineralogy Mapper (M3), a spectrometer that was carried by Chandrayaan-1 probe.

We have chosen four different swirks on the Moon:

- Mare Ingenii
- Mare Marginis
- Rima Sirsalis, and
- Reiner Gamma swirl.

In each of them, we selected several tens to hundreds spectra from four distinct regions:

- a) fresh crater outside the swirl (fresh - out).
- b) fresh crater in the swirl (fresh - in).
- c) mature material in the swirl (mature - in), and
- d) mature material outside swirl (mature - out).

Fig. 2: Sample output of our MGM modification.

We treat the spectra with the Modified Gaussian Model (MGM) by Sunshine et al. (1990). To manipulate sets of several hundreds spectra, we wrote a routine that pre-estimates spectral parameters. This allows us to use MGM in cycles. It is done by:

- estimation of number of absorption bands,
- fitting absorption bands by quadratic functions, and
- fitting continuum by a linear function.

Fig. 3: Results.

Some of our results:

- when we stack all the spectra from a given region, and then evaluate them with MGM, mature swirl material seems to have intermediate depth of 1 μm absorption band between fresh and mature off-swirl material in all swirks (see figure (a) on left),
- when we apply MGM on all spectra individually, and then make histogram plots of all the parameters, 1 μm band also exhibits this trend (see fig. (b) on left),
- 2 μm band and spectral slope follow the trend only in some cases (see Table): Reiner Gamma has the trend in all three parameters.

| Table: Does the spectral parameter follow the trend (mature - swirl - fresh)? |
|--------------------------|-----------------|-----------------|-----------------|-----------------|
| | Mare Ingenii | Mare Marginis | Rima Sirsalis | Reiner Gamma |
| Depth of 1 μm (nmR) | ✓ | ✓ | ✓ | ✓ |
| Depth of 2 μm (nmR) | ✓ | ✓ | ✓ | ✓ |
| Spectral slope | ✓ | ✓ | ✓ | ✓ |

*: trend is present but is below 5% significance level

To conclude:

- when comparing the depth of 1 μm band, all swirks seem to exhibit described trend (swirl material is intermediate between mature and fresh material),
- Reiner Gamma is the only swirl that follows the trend in all three main parameters (depths of 1 and 2 μm band, and spectral slope),
- in other spectral parameters, different swirks behave differently.

We acknowledge the support from Academy of Finland and University of Helsinki Research Foundation.

We would also like to thank Dr. Georgiana Kramer for her help with understanding M3 data and spectral properties of the Moon.