CUVE – Cubesat UV Experiment

Unveil Venus’ UV Absorber with CubeSat UV Mapping Spectrometer

V. Cottini (UMD), S. Aslam (NASA GSFC), N. Gorus (CUIA), T. Hewagama (UMD), L. Glaze (NASA GSFC), N. Ignatiev (IKI RAN), G. Piccioni (INAF IAPS), E. D’Aversa (INAF IAPS)

CUVE TEAM includes experts in: Venus’ atmospheric composition, chemistry, dynamics and radiative transfer; Mission and Instrument Design; Venus mission concept formulation studies; Design, fabrication and operation of spectrometers for remote sensing

WHY VENUS?

Venus is an ideal target for SmallSats deep space exploration:
- Reachable by an independent small spacecraft
- ~1/3 of low-mass stars have planets in the Venus-zone (interior to HZ)
- Still open compelling questions that needs to be addressed
- UV measurements must be acquired from space
- Venus science achievable with cost efficient compact spacecraft
- Public is very interested in Venus exploration (CUVE > 70 articles in few months from more than 10 countries)

PREVIOUS UV OBSERVATIONS

- **Pioneer Venus**
 - CUVE
 - VIRTIS (M Visible)
 - 290-1100 nm
 - 2 nm

- **Venus Express**
 - SPICAV (SUV)
 - 110-310 nm
 - 1.1.5 nm

- **Venus Express**
 - VMC (UV)
 - 345-384 nm
 - 40 nm

- **Akatsuki**
 - UV
 - 293-365 nm
 - 72 nm

- **HST**
 - STIS (low/mod Res)
 - 115-555 nm
 - 0.27 nm

- **Messenger**
 - MASCIS VIS
 - 300-1000 nm
 - 4.7 nm

- **CUVE**
 - Spectrometer
 - 200-400 nm
 - 0.2 nm

- **CUVE**
 - Imager
 - 320-570 nm
 - 4 nm

- **CUVE**
 - Bands not resolved in VIRTIS and SPICAV spectrometers

CUVE can provide high resolution UV spectrum of Venus, with large coverage and imaging of cloud top structure to derive the science objectives:
- 1. Nature of the UV-absorbers;
- 2. Abundances and distributions of SO$_2$ and SO at and above Venus’s cloud tops and correlation with the UV absorber;
- 3. Atmospheric dynamics at the cloud tops, structure of upper clouds and wind measurements from cloud-tracking

ACKNOWLEDGEMENTS: We acknowledge the support of NASA Planetary Science Deep Space SmallSat Studies (PSDSS) program and NASA/GSFC

VENUS CLOUD TOP SCIENCE

- Venus clouds reflect in the visible most of the incoming solar radiation (albedo ~75–90%)
- ~50% of the solar energy received by Venus is absorbed in the UV by a unidentified absorber in its top cloud layer
- This absorbed energy is the primary atmospheric engine of Venus
- Clouds top structure and UV absorbers nature are key parameters for understanding Venus’ atmospheric dynamics and energy balance
- Venus science is achievable with cost efficient compact spacecraft
- Public is very interested on Venus (> 70 articles on CUVE in few months from more than 10 countries in the world) – see bottom page – and see Jessup, K.-L. et al. Motivations for a Detailed In-Situ Investigation of Venus’ UV Absorber. VEXAG 2017 - LPI contribution and EPSC 2018.

CUVE – Cubesat UV Experiment – on a polar orbit around Venus

- **Data Telemetry**
- **Nadir Observation**

CUVE Payload
- UV image spectrometer
 - 200 – 400 nm
 - 0.2 nm spectral resolution
- UV multispectral imager
 - 320 – 570 nm
- **CUVE UV absorber nature**
- **CUVE UV absorber distribution and atmospheric dynamics**

MISSION OVERVIEW

- 1 unique 12U spacecraft
- Can be deployed from Geostationary Transfer Orbit (GTO)
- Other possible rideshare opportunities: LEO missions, Heliophysics, Discovery, New Frontiers
- Spacecraft reach Venus using internal electrical propulsion system
- At Venus, spacecraft will be placed in high altitude polar orbit
- Spacecraft establishes direct communication with DSN during cruise, instrument check-out, insertion, operations
- Mature TRL: Most component have high TRL (6-8).
- Mission end: orbital decay into Venus (no planetary protection concerns)

KNOWN AND POTENTIAL UV ABSORBERS

Known absorbers:
- SO$_2$, varies from 0.1 to 1 ppm at the cloud top (Barker 1979, Conway et al. 1979, Stewart et al. 1979, Esposito et al. 1988, Bertaux et al. 1996 Markq et al. 2011)
- SO about 30% of SO$_2$ (Na et al., 1990)

Other candidate species for the observed UV contrast features:
- Sulfur-bearing species - sulfur S$_2$, S$_3$, S$_4$, OSSO – FeCl$_2$
- Zasova 1981 proposes 1 % FeCl$_2$ in 80% H$_2$SO$_4$ and Krasnopolsky (1986) favored it

CUVE SIMULATED DATA

Nadir UV dayside spectrum is mostly composed of solar light back-scattered by atmospheric cloud particles.

- From the spectrum we can derive information about scattering particles and gases encountered in the atmosphere by the scattered solar radiation.
- Inhomogeneity in spatial/vertical distribution of the unknown absorber produces the famous UV features – used also to study the dynamics of the clouds.

Venus UV spectrum

CUVE UV spectrum has multiple absorption features between 200 and 500 nm

CUVE lower res multispectral image (320 – 570 nm in blue)

Unidentified absorber above 320 nm

CUVE high res multispectral image (200 – 400 nm) in red

SO$_2$ and also SO bands between 200 and 400 nm