Thursday, March 23, 2017

POSTER SESSION II: SMALL IMPACTS AND SMALL IMPACTORS
6:00 p.m. Town Center Exhibit Area

Luther R. Prieur N. C. Wünnemann K. Werner S. C.
Crater Formation and Shock Melt Production for the 17th March 2013 Lunar Impact Flash Event [#3012]
We study a famous example of an impact flash, focusing on the melt that is produced during the impact event.

Wren P. F. Fevig R. A.
Investigation of Doublet Craters on Ceres as Evidence of Main Belt Binary Asteroid Systems [#2407]
Using Dawn Framing Camera images of Ceres, we searched for doublet craters. More possible doublets were found than a random distribution would indicate.

Congram S. N. Strait M. M. May B. A.
Porosity Adjustments of Carbonaceous Chondrite Analog [#2842]
Experiments are done to explore the adjustments in the porosity of carbonaceous chondrite analogs in order to alter the density.

Elmer W. C. Strait M. M.
Investigation of Particle Movement After Disruption [#2931]
Using video files to analyze the relationship between particle size and velocity after a disruption event.

Larson J. Sarid G.
Modeling the Evolution of Ejects Clouds Off Small Bodies: An N-Body Particle Approach with REBOUND [#2829]
Small body collides / N dust particles will fly / Strewn by binary.

Ishibashi K. Kurosawa K. Okamoto T. Matsui T.
Generation of Reduced Carbon Compounds by “Low” Velocity Impacts [#2141]
Impact experiments with meteorite analogues at relatively low velocity (i.e., ~6.5 km/s) generated a large amount of reductive gases species such as CH₄.

Disruption of Carbonaceous Chondrite Analogs [#2529]
Comparison of carbonaceous chondrite analogs disruptions to actual meteorite disruptions.

Durda D. D. Marchi S. Grosch D. J. Chocron S. Walker J. D. et al.
Impact Experiments with Iron-Nickel Targets: Momentum Enhancement and Crater Morphology [#1266]
We present results of impact experiments into iron-nickel targets at temperatures of 20°C and –124°C, with a focus on differences in crater morphology.

Gulde M. Kortmann L. Watson E. Ebert M. Schäfer F.
High-Speed Optical Tracking of Individual Ejecta Particles from Hypervelocity Impacts [#1925]
Robust methodology to accurately determine the trajectories of individual particles ejected after hypervelocity impacts.

Stewart S. T. Spaulding D. K.
The Shock Compression Laboratory at the University of California, Davis [#2154]
Here we describe a new shock physics facility for planetary studies at the University of California, Davis.