Introduction: Chlorine-36 ($t_{1/2}$=0.3 Myr) decays to either 36Ar (98%, β^-) or 36S (1.9%, α and β^+). This radionuclide can be produced by either charged particle irradiation [1,2] or stellar nucleosynthesis [3]. Evidence for the prior existence of 36Cl in the Early Solar System (ESS) comes from radiocarbon excesses of 36Ar [4,5] and/or 36S [6-9] in secondary phases (e.g., sodalite and wadalite) of ESS materials such as Ca, Al-rich inclusions (CAIs) and chondrules. However, the inferred initial 36Cl/35Cl ratios vary over three orders of magnitude among different chondrite constituents (5×10^{-6}-9×10^{-5}) [6-9]. Interestingly, although the initial 36Cl/35Cl ratio inferred in previous studies vary widely, all secondary phases bearing evidence for live 36Cl in the ESS measured so far lack resolvable 26Mg excesses due to the decay of 26Al ($t_{1/2}$ = 0.7 Myr), implying that 36Cl and 26Al may have been produced by different processes and/or incorporated into ESS solids at different times. Given that secondary phases may have formed later, the 36S anomalies in secondary phases point to either a very high 36Cl/35Cl initial ratio ($\sim 10^2$) in the ESS, or a late irradiation scenario for the local production of 36Cl (> 3 Myr after CAI formation) [9]. The elevated ESS ratio of 36Cl/35Cl $\sim 10^2$ inferred from [9] far exceeds the predictions from any model of stellar nucleosynthesis; therefore, a late irradiation scenario producing 36Cl is currently the favored idea. In this framework, 36Cl would be be produced in the nebular gas and then incorporated into the CAIs via aqueous alteration, which formed secondary phases.

To further investigate the origin and distribution of 36Cl in the early solar nebula, we analyzed 36Cl/35S systems in secondary minerals of three fine-grained CAIs and one coarse-grain CAI from Allende.

Sample description and Method: The fine-grained Allende CAIs (Curious Marie, AL10S1, and 4321-FG-1) consist of widely-distributed powdery, porous aggregates of sodalite [Na$_8$(Al$_8$Si$_6$O$_{24}$)Cl$_4$], nepheline [(Na$_3$K)Al$_6$Si$_4$O$_{12}$], grossular (Ca$_3$Al$_2$Si$_3$O$_{12}$), and melilithe ([Ca$_8$Na$_2$](Al$_4$Mg$_2$Fe$^2+$)(Al$_2$Si$_2$O$_7$)), suggesting that these CAIs have been intensely altered from their primary mineralogy. Three wadalite grains [Ca$_8$(Al, Si, Mg)$_{10}$O$_{24}$Cl$_4$] are observed in the coarse-grained CAI (4322-CG-1), occurring as anhedral grains intergrown with grossular replacing melilithe. The high chlorine content in sodalite (~ 7 wt%) and wadalite (~ 12 wt%) and extremely low sulfur content (~ 0.01 wt%) make them ideal minerals for resolving potential 36S excess due to decay of 36Cl.

Measurements were performed on the Cameca IMS-1290 at UCLA. Negative S and Cl secondary ions were produced by a 0.6 nA Cs$^+$ primary ion beam focused to a <10 μm spot in mono-collection mode. A long pre-sputtering time was required (>20 minutes) to minimize surface S contamination. A mass resolving power of 5,000 was used to resolve interferences from the peaks of interest. Typical count rates of 36S from the sodalite and wadalite in the CAI samples were 4-10 counts per second. The instrumental mass fractionation was internally corrected by comparison to standards of Balmat pyrite, Canyon Diablo troilite, and CAR 123 pyrite. The transmission was deliberately decreased to minimize the QSA effect (Quasi-Simultaneous Arrival) [10] when measuring the pyrite and troilite standards. Sulfur isotopic ratios were calculated by using total counts due to relatively low 36S count rate. A systematic offset of 15% on the 36S/34S ratio was observed on all the standards when normalizing measured 36S/34S to the reported value of CDT [11] with corrected 36S/34S$_{\text{CDT}}$ = 0.0034200. A terrestrial sodalite (32Cl/34S = 15,000) was measured to monitor the accuracy of the measurement on 36S excess.

The bulk 35Cl/34S ratio of Curious Marie was measured by making 25 μm \times 25 μm raster squares on the sample and then averaging the measured 35Cl/34S ratios. The signals of 35Cl and 32S are clearly resolved as 1145±400 by averaging 30 raster analyses. Assuming an 34Cl/36Cl ratio of ~1.6 for CDT (1/2 has a upper limit of 500,000. The relative sensitivity factor (RSF) of 35Cl/34S (1.24) used throughout this study was estimated from analyses of NIST 610 glass (Cl/S=1).

Result and discussion: No elevated 36Cl/35Cl initial ratio (<10) was observed in our study. As shown in Fig. 1, no resolvable 36S excesses were found in the sodalite of AL10S1. Sodalite grains in 4321-FG-1 and wadalite in 4332-CG-1 exhibit resolvable 36S excesses, giving a 36Cl/35Cl ratio of ~1.6\times10$^{-2}$ and ~8.3\times10$^{-3}$, respectively. Assuming an alteration timescale of ~2.5 Myr based on 26Al-26Mg systematics in secondary phases of CAIs (e.g., [9]), the two CAIs yield an upper limit for the ESS initial 35Cl/36Cl ratio $< 2.7 \times 10^{-4}$.

Curious Marie is a U-depleted Allende CAI with highly elevated 238U/238U, most likely due to the decay of 247Cm [12]. Significant excesses in 36S are clearly resolved in this sample over a large range of 35Cl/34S values (from 500 to 20,000). However, the 36S excesses are uniformly elevated, with a weighted average of 97±12‰, independent of the Cl/S ratio, indicating late closed-system homogenization of the 36S excesses after 36Cl became extinct. The 35Cl/34S bulk ratio was estimated as 1145±400 by averaging 30 raster analyses. The 36Cl/35Cl ratio in the bulk of the Curious Marie CAI is estimated as (1.5±0.6)\times10$^{-5}$.

The 34Cl/34Mg systematics has been analyzed in the secondary phases (sodalite and nepheline) of the Curious Marie CAI, giving an elevated and uniform 36Mg excess of...
alanic 4% and implying a canonical 26Al/27Al ratio of (6.2±0.9) \times 10^{-5} for the bulk inclusion [13]. To explain this result, an early aqueous alteration event (probably on a small icy body) must have occurred while 26Al was still at the canonical abundance in the ESS (< 0.15 Myr) [15]. Introduction of 36Cl into Curious Marie likely took place during this event, as any open-system alteration occurring later on would have resulted in a lower than canonical model 26Al/27Al ratio for this sample. If so, 36Cl and 26Al must have coexisted early in the solar nebula, and the calculated 36Cl/35Cl model ratio in Curious Marie (1.5±0.6)\times 10^{-5} represents the 36Cl/35Cl ratio at the time of the early aqueous alteration, thus giving the initial 36Cl/35Cl ratio in the ESS to be 1.3\times 10^{-5}. This ratio is lower than the upper limit in the ESS inferred in previous studies on sodalites in other CAIs by a factor of ~10 [6,7].

36Cl can be produced by local irradiation or inherited from stellar sources. The volatile nature of this radionuclide and the need for volatile target nuclides (Cl and K) pose a serious challenge to early in-situ irradiation models [6]. One interpretation is that intense local irradiation could have occurred in a volatile-rich reservoir adjacent to chondrite-accreting regions [9]. Subsequently, 36Cl was incorporated into secondary, chlorine-rich minerals during parent body alteration. However, this scenario requires an optically thin protoplanetary disk while the Sun was a weak T Tauri star (Class III, t ≥ 1 Myr after CAI condensation) and would thus require late aqueous alteration (> 1 Myr). Such late, open-system alteration would remove radiogenic Mg from the inclusion resulting in a lower bulk 26Al/27Al ratio (26Al/27Al ≤ 2 \times 10^{-5}), contrary to our results in Curious Marie. Hence, we propose that 36Cl in Curious Marie was derived from an external stellar source (e.g., inheritance from the molecular cloud, or a specific stellar source; [3]) along with 26Al, and accreted into a pre-accretionary icy body. Early aqueous alteration then took place before 26Al had decayed significantly, and formed 36Cl-bearing sodalite. The isotopic characteristics of Curious Marie indeed suggest that 36Cl and 26Al could have been co-incorporated into secondary minerals. However, our observation does not rule out the presence of 36Cl due to late spallation as inferred in the secondary minerals from other CAIs and chondrules. 26Al-to-Mg in situ analyses in the secondary phases of AL10S1, 4332-CG-1, and 4321-FG-1 will be done in the near future to quantify the timescale of aqueous alteration in these objects.

Figure 1. 36Cl,35S systematics in Allende CAIs. In Curious Marie, red dash line reflect the model 36Cl/35Cl ratio based on the average $\delta^{34}S$ and bulk $^{35}Cl/^{34}S$ ratio.