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Introduction: Life on Mars, if it exists, may share a 
common ancestry with life on Earth due to the estimated 
billion tons of rock transferred between Mars and the 
Earth during the late heavy bombardment period [1].   
Therefore, biological informational polymers (e.g., de-
oxyribonucleic acid - DNA, and ribonucleic acid - 
RNA) have the potential to provide unambiguous evi-
dence of any ancestrally-related life on Mars and dis-
cern any forward contamination [2]. 

We are developing an integrated nucleic acid extrac-
tion and sequencing instrument, the Search for Extra-
Terrestrial Genomes (SETG), for life detection on Mars 
and Ocean Worlds [3-7]. Our goal for technology read-
iness level (TRL) 6 is to achieve a sensitivity of one part 
per billion. This corresponds to 104 Bacillus subtilis 
spores (~4 megabase genome, selected to represent a 
“worst case” extraction scenario) in our nominal 50 mg 
soil sample size (2 x 105 spores/g). We have defined de-
tection as sequencing of 106 bases. Given the current 
state of the art in single molecule sequencing, including 
post-extraction losses, this goal requires at least a 5% 
extraction yield (~2 pg DNA) [3]. 

On Earth, metagenomic analysis of DNA extracted 
from environmental samples can be difficult [8,9]. 
Complex matrices (e.g., oxidized soils, sea water, etc.), 
low cell concentrations [10], and tough-to-lyse organ-
isms pose numerous challenges for acquiring DNA. 
Challenges mostly derive from a combination of com-
petitive adsorption of DNA to soils [11] , DNA destruc-
tion by soils [9], and/or hardy cells resistant to lysis. 

Here we present DNA extraction results from Mars-
relevant cell concentrations, e.g. similar to those ob-
served in the Atacama Desert [12], in synthetic Mars an-
alog soil [13] using a custom extraction cartridge (Fig-
ure 1a) developed by Claremont BioSolutions, LLC 
(CBIO). Furthermore, we characterize the sequencing 
efficiency of the current generation of Oxford Nanopore 
Technologies (ONT) MinION Mk-1b sequencers and 
R9.4 flowcells for low-input sequencing. We employ a 
“pore maintainer” (Enterobacteria phage, Lambda 
DNA)  to preserve nanopore viability and sequence 0.2 
ng of B. subtilis DNA (equivalent to 5% yield from 106 
B. subtilis spores) which would otherwise produce in-
sufficient high-quality detections. 

Methods: Extraction: The extraction cartridges 
(Figure 1a) were based on CBIO’s OmniLyse® me-
chanical cell disruption system. Coupled with binding 

and elution buffers, we conducted rapid (5 minutes) 
solid-phase nucleic acid extraction from tough-to-lyse 
organisms [14]. Work by Mojarro et al. on synthetic 
Mars analog soils and the commercial OmniLyse® sys-
tems has led to the development of the modified extrac-
tion protocols employed here (Figure 1b) [15,16].  

Approximately 1.56 x 104 B. subtilis ATCC 6633 
spores (SBS-08, NAMSA) and 50 mg of a “perchlorate” 
soil, an analog for the Phoenix lander site [13] was ho-
mogenized in 800 µL of 8x CBIO binding buffer (n=4) 
followed by desalting in an Amicon® Ultra-0.5 column 
(Z740183). The soil/spore mixture was then re-sus-
pended in 800 µL of 4x CBIO binding buffer and 4 µg 
of random hexamer primers (C1181, Promega), homog-
enized, and processed in our extraction cartridge result-
ing in 200 µL of CBIO elution buffer. Moreover, a blank 
extraction (n=1) and ddPCR water control (n=3) were 
used to identify any sources of contamination. 

Figure 1: (a) CBIO extraction cartridge (b) Extraction protocol (c) 
Raw ddPCR data, events with fluorescence greater than 20,000 rep-
resent one spore detection (d) DNA yield results, 1.56x104 B. sub-
tilis spores in 50 mg of soil and water. NTC and Blank measure re-
agent and hardware contamination. 
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 Extracted B. subtilis DNA was quantified using 
droplet digital polymerase chain reaction (ddPCR) with 
single copy primers targeting B. subtilis (SpaC gene, 
forward: TGA GGA AGG ATGG GAC GAC A, re-
verse: AAC AGA TTG CTG CCA GTC CA). ddPCR 
partitions a sample into ~20,000 water-oil emulsion 
droplets to create a massively parallel number of PCR 
reactions. Droplets containing an amplified product can 
be measured as highly fluorescent due to presence of a 
DNA-specific fluorescent dye. When a solution is ade-
quately dilute, such as in this case, each droplet will 
contain either zero or one copy of a gene sequence (ac-
cording to the Poisson distribution). Since spores of B. 
subtilis contain only one copy of their genome, one flu-
orescent droplet represents one spore (Figure 1c). Ex-
traction yield was calculated as extracted DNA / input 
DNA.  

Sequencing: The MinION sequencer and flowcell 
performs strand sequencing by monitoring changes in 
an ionic current caused by the translocation of a polymer 
through a nanopore. Before DNA can be sequenced, it 
must undergo a “library preparation” step where it is 
modified into a readable format for sequencing. We pre-
pared 0.2 ng of B. subtilis ATCC 6633 spore DNA 
within 250 ng of Lambda DNA using a transposase-
based kit (SQK-RAD001), loaded half of the library 
(~125 ng), and sequenced on an Intel® Compute Stick 
(STK2MV64CC) for 7.1 hours. The resulting raw de-
tections were basecalled (convert raw current measure-
ments into base pairs) on ONT’s Metrichor cloud ser-
vice. Additional analysis was conducted using 
PoreTools, Burrows-Wheeler Aligner (BWA), MASH, 
and the Basic Local Alignment Search Tool (BLAST). 

Results and Discussion: Extraction yields of B. 
subtilis spore DNA in water (Figure 1d) were consistent 
with prior work on higher concentrations (~15% yield 
at 108 spores) [15]. Low extraction yields from spores 
are likely due to small acid-soluble proteins that bind 
DNA [15]. In contrast, DNA yields from vegetative 
Escherichia coli in water are around 80-90% [14]. All 
extractions from the perchlorate soil satisfied our 5% re-
quirement except one sample (1.9%) for which a pump 
malfunctioned at the elution step. 

Our sequencing metrics indicate that current na-
nopore sequencing is inefficient. From the theoretically 
available library (Table 1), only 8.7 x 10-5 % was se-
quenced. The causes of this detection remain to be ex-
plored; we speculate library may be lost due to adsorp-
tion to flow cell channels or other surfaces, the translo-
cation-regulating motor protein may me knocked off of 
library molecules, or some library molecules floating in 
the headspace may simply never reach the nanopores. 
Although the theoretical sensitivity of single-molecule 
nanopore sequencing is astounding, it currently requires 

appreciable amounts of input DNA to compensate for 
these post-extraction losses.  

We mapped all high-quality reads (Table 1) (Met-
richor pass data) to either a B. subtilis and Lambda ref-
erence genomes using the BWA analysis package. 
Based on library stoichiometry, we expected 1 B. sub-
tilis detection per 1251 Lambda detections. BWA map-
ping revealed 1:1886 bases and 1:1055 reads (better per-
formance likely due to shearing). We then confirmed 
positive identification of B. subtilis using MASH. 

Conclusions & Summary: In this study, we have 
validated our extraction protocols to Mars-relevant cell 
concentrations and characterized sequencing efficiency. 
Our results suggest employing a pore-maintainer can 
improve low-input sequencing, however, future studies 
will focus on improving sequencing efficiency, required 
to achieve our future sensitivity goals. In addition, our 
sequencing results simulate the potential for a ge-
nomics-based instrument to detect low-levels of con-
tamination, relevant to planetary protection. 
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Table 1: Sequencing metrics. *Closest genome reference for B. 
subtilis ATCC 6633, 99.35586 symmetric identity. 
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