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Introduction:  Impact-generated hydrothermal al-

teration has been observed within core samples from 
the Yucatán-6 [1] and Yaxcopoil-1 (Yax-1) [2-6] bore-
holes, both located between the peak ring and crater 
rim.  A thermal model of the hydrothermal system sug-
gests it may have been active for 1.5 to 2.3 Myr [7].  
The Chicxulub system is an important proxy for those 
that may have been produced during the Hadean, af-
fecting the early evolution of life on Earth [8,9], and 
similar systems on Mars (e.g., [11-13]). 

A time-spatial reconstruction of alteration in the 
Yax-1 borehole indicated a high-temperature phase in 
excess of 350 ºC [5,13].  Sodium-K metasomatic ex-
change for Ca in plagioclase and production of K-
feldspar veins followed, also at temperatures in excess 
of 300 ºC, with co-precipitation of magnetite, sphene, 
and apatite [5].  As temperatures continued to fall from 
270 to 100 ºC [14], mafic components were sequential-
ly replaced by biotite-phlogopite, epidote, chlorite, and 
clay, along with hydrothermal quartz, calcite, rutile, 
chalcopyrite-bornite, and barite [5].  Modeling [7] sug-
gests similar – or even more vigorous – hydrothermal 
activity may have persisted in the crater peak ring.   

New Borehole Samples:  In part to test that model, 
the International Ocean Discovery Program (IODP) 
and International Continental Scientific Drilling Pro-
gram (ICDP) drilled into the peak ring at site M0077A 
[15]. Impactites were recovered from a depth of 617 to 
1335 mbsf.  The upper 130 m are composed of impact 
melt rock and suevite.  The remaining core is dominat-
ed by granitoids, a few pre-impact intrusives, and im-
pact-generated horizons of melt rock and suevite that 
were emplaced during upward and outward displace-
ment of the peak ring [16].   

We conducted an initial survey of splits from the 
core to evaluate alteration assemblages, their paragene-
sis, and implications for any co-existing biotic systems.  
In general, we found (i) an initially hot hydrothermal 
system that emerged as a potential habitat for recover-
ing biota in a once-sterile region and (ii) subsequently 
as an open-network of passages and cavities for biota. 
The peak ring rocks are severely deformed, with shock-
metamorphic features, cataclastic zones, deformation 
bands, and shear planes that would have enhanced fluid 
flow. 

 
Figure 1.  Vein of K-feldspar (Kfs) and albite (Ab) cutting through 
peak-ring granite sample 150-3-25.5-27 (887 mbsf).  Scale bar is 50 
μm. 

 
High-temperature Alteration:  Calcium-Na and 

K-metasomatism is evident along the entire core. In 
impact melt rock sample 85-1-26-28 (717 mbsf), a ma-
trix of <10 μm-long laths of feldspar and rare Ca-
pyroxene is overprinted with alkali feldspar alteration 
fronts and cross-cut by fractures with margins enriched 
in Ca-plagioclase.  Relict quartz from the target en-
trained in the melt has been partially to wholly dis-
solved, implying a hot, Si-undersaturated fluid, and the 
resulting void space filled with secondary calcite, Fe-
sulfide, and magnetite.  Margins of vesicles in the melt 
are rimmed with a sheet silicate and their interiors par-
tially filled with secondary calcite and Ba-sulfate.  In 
addition, a K-feldspar vein cuts across granite 150-3-
25.5-27 (Fig. 1).  Deeper in the peak ring, adjacent to 
an interval of suevite, where the granite was deformed 
into a porous, permeable breccia, the granite (278-2, 
1256 mbsf) is honeycombed with quartz dissolution 
cavities that may be a consequence of Ca-Na and K-
metasomatism at temperatures of 300 to 400 ºC [17].  
In granite sample 221-3-19-24 (1085 mbsf), secondary 
muscovite cross-cuts shock-metamorphic kinking of 
feldspar and is, thus, probably of post-impact hydro-
thermal origin at temperatures in excess of 350 ºC. 

Pervasive Alteration:  Other examples of altera-
tion at temperatures ≤300 ºC include replacement by a 
variety of Mg-Fe and Na-K sheet silicates. Melt frag-
ments in the suevite are altered to saponite-like and 
montmorillonite-like smectite-group minerals with sig-
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nificant chemical zoning and variable nH2O.  In granite 
150-3-25.5-27, Ti-rich biotite is being replaced by 
chlorite and epidote is present. Where a 2-cm-wide 
melt vein cuts through granite sample 206-3-54-56 
(1039 mbsf), the melt is enriched in Mg and K relative 
to the granite and contains distributed particles of Fe-
sulfide.  The adjacent granite, with albite 
(An1Ab97Or2), K-feldspar (An1Ab4Or95), and quartz, is 
crosscut with several types of veins consisting of 
quartz; muscovite; a mafic aluminosilicate; calcite with 
sphene and galena; and Ti-oxide with zircon and cal-
cite.  Isolated precipitates of galena are associated with 
chalcopyrite in impact-generated fracture pore spaces.  
A cm-wide vein of epidote cuts through the lowermost 
core section (303-3-1.5-3.5, 1334 mbsf). Some altera-
tion in the core is due, however, to pre-impact process-
es, such as alteration halos along the margins of doler-
ite intrusions. 

Lower-temperature Filling of Vugs and Open 
Fractures:  Cavities are filled with secondary quartz 
(var. amethyst), epidote, calcite, barite, at least two Fe-
sulfide minerals, halite, and co-existing analcime and 
Na-dachiardite (Fig. 2a), sometimes with heulandite.  
The paragenesis of dachiardite is still poorly under-
stood, but has been produced experimentally at 250 ºC 
[18].  Analcime can be produced from albite and water 
when temperatures cool below 200 ºC [19].   

Venting at the Surface:  Venting is implied by 
vertical alteration channels and partially- to wholly-
filled pockets with sparry calcite in the uppermost sue-
vitic cores (#40-41).  Similar features, albeit much less 
obvious, were noted while logging cores 43 and 46. 

Habitats and Energy Sources: Hydrothermal al-
teration is notoriously heterogeneous, but the inferred 
high temperatures would have been locally sterilizing.  
We are still assessing potential energy sources, but 
sulfide framboids in several veins of 63-2-69.5-72 (Fig. 
2b), which is a low-temperature and, thus, biologically-
compatible mineral assemblage, imply sulfate reduc-
tion was one viable energy source for microorganisms.   
If the model of [7] is correct, conditions for thermo-
philic and hyperthermophilic life may have existed in 
this part of the peak ring for 104 to 105 years. 

Conclusions:  We have identified high- and low-
temperature elements of an evolving hydrothermal sys- 
tem in the peak-ring of the Chicxulub impact crater.  
As anticipated, fluids were as hot as those that affected 
Yax-1 samples in the crater trough, but more study will 
be needed to map out the full paragenetic sequence as 
in Yax-1 (Fig. 9 of [5]) and the longevity of that sys-
tem.  Potentially, the hydrothermal system was hotter 
and persisted longer in the vicinity of the peak ring [7] 
where the M0077A borehole is located.   

 

 
Figure 2. (a) Transparent analcime (Anl) and red Na-dachiardite 
(Dac) in open cavities within suevite sample 60-1-90-92 (678 mbsf). 
Analcime also occurs at the base of the 1335 m-deep borehole. Scale 
bar is 1 mm. (b) Sheaves of Na-dachiardite with framboids of pyrite 
(Py) growing into an open fracture adjacent to K-feldspar (Kfs) with 
a Ca-phosphate crystal in sample 63-2-69.5-72 (685 mbsf).  The 
pyrite framboids may be reduction products after sulfate. Backscat-
tered-electron image.  Scale bar is 100 μm. 
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