DIVERSE ALTERATION OF DOM 08006 (CO3.0) AND DOM 08004 (CO3.1) AND ITS EFFECT ON OXYGEN ISOTOPE COMPOSITIONS OF GROSSITE-BEARING REFRactory INCLUSIONS. A. N. Krot1, K. Nagashima1, and S. B. Simon2 1HIGP/SOEST, University of Hawai‘i at Mānoa, Honolulu, HI 96821, USA (*sasha@higp.hawaii.edu); 2Dept. of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA.

Introduction: Most Ca,Al-rich inclusions (CAIs) in chondrites of petrologic type ≤3.0 (CO, CR, CM) are uniformly 16O-rich (Δ17O = −24‰) suggesting formation in a gas of approximately solar composition [1, 2]. In contrast, melilite and anorthite in CAIs from CO and CV chondrites of higher petrologic type (≥3.1) are often 16O-depleted to various degrees [3, 4], indicative of postcrystallization exchange with an 16O-poor external reservoir. The place and mechanism of this exchange (gas-melt or gas-solid in the nebula vs. fluid-rock on the parent bodies) remain controversial [4–6]. In our companion abstract [7], we reported on the mineralogy, petrography and O-isotope compositions (only in DOM 08004) of grossite-bearing CAIs in DOM 08004, 6 (CO3.1) and DOM 08006, 56 (CO3.00) (classification is based on Cr2O3 contents in chondrule ferroan olivines [8–10, this study]). In DOM 08004, grossite-bearing CAIs are isotopically heterogeneous with grossite (Δ17O = −11‰ to 0‰), and, in most cases, melilite (Δ17O = −15‰ to −1‰) being 16O-depleted relative to hibonite, spinel, and Al,Ti-diopside (Δ17O = −24‰). In DOM 08004, grossite experienced incipient replacement by Fe-rich phases(s); in DOM 08006, it is petrographically pristine. Both meteorites experienced asteroidal alteration resulting in formation of phyllosilicates and abundant magnetite [9–12]. To understand possible effect of this alteration on the O-isotope compositions of grossite-bearing CAIs, we studied secondary mineralization of DOM 08004 and 08006 by the UH field emission electron microprobe JEOL JXA-8500F. Oxygen-isotope compositions of magnetite to be measured in situ with the UH Cameca ims-1280 will be reported at the meeting.

Secondary mineralization in DOM 08004 (CO3.1): Most Fe,Ni-metal nodules in chondrules are pseudomorphically replaced by Cr-bearing magnetite and Ni-rich metal, and often overgrown by clean Cr-free magnetite (Fig. 1a). Chondrule mesostasis is partially replaced by phyllosilicates. The most extensive alteration was found in silica-bearing pyroxene chondrules, in which silica is nearly completely pseudomorphically replaced by Fe-rich hydrous phase(s) (in wt%, 26.5 SiO2, 0.93 Al2O3, 61.5 FeO, 0.62 MnO, 4.6 MgO, 0.2 CaO, 0.14 Na2O, Σ = 94.5; “sec” in Fig. 1b). Some olivines in type I and type II chondrule mesostases are overgrown by nearly pure fayalite (Figs. 1c,d). Matrix and fine-grained chondrule rims contain abundant submicron-sized grains of ferroan olivine, and are occasionally crosscut by fayalite veins (Fig. 1b). In addition, the matrix contains abundant coarse euhedral-to-subhedral magnetite grains associated with Ni-rich metal and

Fig. 1. Backscattered electron (BSE) images of secondary mineralization in DOM 08004 (CO3.1). met = Fe,Ni-metal; mgt = magnetite; ol = olivine; phyl = phyllosilicates; px = low-Ca pyroxene; sec = secondary Fe-rich hydrous phase(s); sf = sulfide; sil = silica.
troilite; Fe, Ni-carbides are exceptionally rare. Texturally and mineralogically similar secondary mineral assemblages have been described in MAC 88107 (CO3.1-like) and Kaba (CV3.1) [6,13]. DOM 08004 is brecciated and contains fragments of nearly completely hydrated chondritic clasts.

Secondary mineralization in DOM 08006 (CO3.00): Alteration of opaque nodules and mesostasis in chondrules is similar to that in DOM 08004. Matrix and fine-grained chondrule rims, however, contain abundant Fe, Ni-carbides (Figs. 2a–c), and, occasionally, crosscut by Fe, Ni-carbide veins (Fig. 2d); no secondary fayalite was found. In addition, the matrix contains abundant rounded magnetite nodules and coarse euhedral-to-subhedral magnetite grains associated with Ni-rich metal, troilite, pentlandite, and Fe, Ni-carbides. Texturally and mineralogically similar carbide-magnetite-bearing assemblages have been described in Semarkona (LL3.0) [14] and ALHA 77307 (CO3.0) [15]. DOM 08006 is brecciated and contains fragments of thermally metamorphosed chondritic material.

Discussion: Based on our mineralogical observations of DOM 08004, and thermodynamic analysis and isotopic data reported for fayalite-magnetite assemblages in Kaba and MAC 88107 [6,13,16], we infer that DOM 08004 experienced relatively high-temperature (~100–300°C) hydrothermal alteration at a low water/rock ratio (<0.2). Krot and Nagashima [6] showed that anorthite and melilite in Kaba CAIs experienced O-isotope exchange with an asteroidal fluid responsible for the formation of fayalite and magnetite in that meteorite. We suggest that the 16O-depleted compositions of grossite and melilite in the DOM 08004 CAIs [7] could have resulted from postcrystallization isotope exchange during fluid-rock interaction on the CO chondrite parent body. Δ17O value of the fluid will be constrained by O-isotope compositions of fayalite and magnetite in DOM 08004, to be measured. DOM 08006 appears to have experienced relatively low temperature, Semarkona-like alteration, resulting in formation of carbide-magnetite assemblages. Therefore, it is expected that grossite-bearing CAIs in DOM 08006 have retained their initial O-isotope compositions. SIMS measurements of these CAIs are in progress and will be reported at the meeting.

![BSE images of secondary mineralization in DOM 08006 (CO3.0). Region outlined in "b" is shown in detail in "c". crb = Fe, Ni-carbides; FGR = fine-grained rim; mgt = magnetite; ol = olivine; phyl = phyllosilicates; px = low-Ca pyroxene; sf = sulfide.](image)