Crater Formation and Shock Melt Production for the 17th March 2013 Lunar Impact Flash

R. Luther

1. Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany;
2. Centre for Earth Evolution and Dynamics, University of Oslo, Norway.

(*robert.luther@mfn-berlin.de*)

Introduction

For the first time, it was possible to relate an impact flash on the Moon, observed on 17th March 2013 [1], with its corresponding crater detected by LRO [2]. Robinson et al. [2] estimated the impact energy to be 6.4 10^6 kJ – 6.0 10^6 kJ by using scaling laws.

Objectives:
1. Improve the determination of impact energy by modelling crater formation with the shock physics code iSALE [3,4,5].
2. Determine impact-induced melt production and ejection of molten particles.
3. Assess the contribution of ejected melt particles to the radiated energy (i.e., the observed flash).

Methods

Constrain kinetic energy of the impact event:

- numerical simulation with iSALE:
 - tune impact energy by projectile mass (velocity 8.5 km/s).
 - target properties (porosity, coefficient of friction) are chosen according to lunar exploration data [9].
 - lunar regolith target
 - basalt (ANEOS)
 - porosity 40%
 - Drucker-Prager strength
 - parametrisation with coefficient of friction $\mu = 1.0$.

References

Acknowledgement

R.L. and K.W. thank DFG and DAAD (DFG-grant FR WU 355/6-2, DAAD mobility grant 57159947), N.O.P. and S.C.W. thank the Research Council of Norway (235058/F20 CRATER CLOCK) and IS-DAAD mobility grant (NFR 244761/F11). We acknowledge the developers of iSALE, VIMOD and pySALEPlot.

Conclusion

- Best fit impact energy for the 17th March impact: 10.3 GJ
- Most radiation is emitted in infrared (T < 3000 K)
- CCDs capture a significant amount of radiation for more than 1s (flash duration) for droplet sizes larger than 2.5 mm radius
- Cooling of melt droplets depends on droplet size.
- Most of the radiated light from the ejecta is emitted in infrared wavelength (T ~ 2000 – 3000 K).
- But, typical CCDs are most sensitive in optical spectrum.
- Still, CCDs can capture a significant amount of radiation for more than 1s for droplet sizes larger than 2.5 mm radius.