Possible Nature and Detectability of Endogenic Thermal Anomalies on Europa

Paul O. Hayne 1, P. R. Christensen 1, J. R. Spencer 3, O. Abramov 4, C. Howett 5, M. T. Mellon 5, F. Nimmo 6, S. Piqueux 1, J. A. Rathbun 4

1NASA – Jet Propulsion Laboratory, California Institute of Technology, (Paul.O.Hayne@jpl.nasa.gov), 2Arizona State University, 3Southwest Research Institute, 4Planetary Science Institute, 5Applied Physics Laboratory, Johns Hopkins University, 6University of California, Santa Cruz

BACKGROUND/MOTIVATION:

How active is Europa at the present time?

What types of thermal anomalies do models of Europa’s ice shell and interior predict?

Previous Work:

Endogenic activity is rarely seen in Earth’s oceanic crust. Thermal anomalies have been inferred to the oceanic crust by seismic studies of the oceanic floor [8, 9]. In contrast, Europa’s thermal anomalies are much more pervasive and could be associated with various processes such as tectonics, plumes, ridges, and basins.

The European Thermal Emission Imaging System (E-THEMIS) is a multi-wavelength infrared instrument designed to search for thermal anomalies in part of NASA’s planned Europa Clipper (EP 10.1) mission. It is based on the highly successful THEMIS observations at Mars [9].

METHODS:

We ran Monte Carlo simulations using a discrete probabilistic model for resurfacing, incorporating temperatures and lifetimes based on numerical thermal models for four feature types: Ridges, Bands, Chaos, Lenticulae.

Temperature and Melting:

- Buried liquid layer with temperature T, produces surface anomaly:
 - Temperature range: 0 – 1 km
 - Shear heating [13] (upper figure): detectable lifetime M = 10 kyr, 8F
 - Freezing and cooling of liquid water: 10 – 100 m thick, detectable lifetime M = 0.1 – 1 kyr [6]
 - Chaos model: At = 1 – 10 kyr, 8F

METHODS:

Likelihood of hot spot occurrence:

- Global average resurfacing rate:
 \[A = A_{surf} \times 1 \text{ km}^2 \text{ yr}^{-1} \]
 - Average occurrence rate for feature i with area A_i = L^2 whose total population occupies a fraction of Europa’s surface f_i:
 \[f_i = \frac{A_i}{A_{surf}} \]
 - Average time between events i:
 \[t_i = \frac{A_{surf}}{A_i} \]
 - Probability of N events during interval Δt, assuming events are independent:
 \[P(N|Δt) = \frac{Δt^N}{N!} \left(\frac{A_{surf}}{N} \right)^N \]

FIGURES:

- Figure (top): Probability of at least one event occurring by any given time for a total area A_{surf} = 10^6 km^2.
- Figure (middle): Detection limits for different feature types (e.g., liquid water).

RESULTS:

Panels at right show example simulation using model parameters above, for a total duration 200 Myr.

The surface temperature “snapshot” is the initial mean temperature map at an arbitrary instant in time.

Predictions for E-THEMIS:

- Thermal anomalies expected for modeled styles of resurfacing: replacement of warm ice or liquid water, or shear heating on faults with sufficient dissipation [13]
- Resurfacing heat sources (e.g., liquid water) detectable within ~100 m to 1 km
- Daytime and nighttime measurements needed; also visible albedos [right figure]
- Background heat flow could be measured if >100 mW m^-2 at the equator, or >100 mW m^-2 at the pole

CONCLUSIONS:

Models of Europa’s ice shell and interior can be tested by the presence or absence of thermal anomalies:

1. Thermal anomalies are likely to be present on Europa today, if resurfacing occurs via warm ice or liquid water, and is either continuous or episodic with recurrence interval < 10 kyr.
2. Expected thermal anomalies are detectable by E-THEMIS with >99% likelihood for the model above
3. Smaller, more frequent thermal anomalies are more likely to be detected, even if they are sub-pixel hot spots

Detection depends critically on accurate measurements of both daytime and nighttime temperature, and visible albedo. NASA’s planned Europa Clipper mission and E-THEMIS are being designed to achieve these objectives.

Acknowledgments:

This work was supported by NASA’s Europa Clipper project. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References: