Observations: Spirit encountered discontinuous stratiform outcrops composed of opaline silica predominantly in nodular masses, some with mm-scale digitate structures comparable to silica deposits at El Tatio, but not recognized in fumarolic settings. Evidence for silica sinter deposits on Mars is important given the known capacity of such rocks to capture and preserve microbes, making them ideal targets in the search for ancient life on Mars [3].

Conclusions: Opaline silica rocks and outcrops adjacent to Home Plate occur in a volcanic hydrothermal environment and display nodular and digitate structures, internal textures, and evidence of halite crusts that all are consistent with sinter deposits like those of El Tatio, Chile. Sinter deposits are well suited to the capture and preservation of microfossils and organics. Thus, the silica deposits at Home Plate can be viewed as ideal candidates for biosignature capture and preservation independent of the potential origin of their digitate structures as biomediated microstromatolites.