Measuring V-XANES in aluminum-rich chondrules to probe oxygen fugacity conditions in the early solar disk

C. E. Jilly-Rehak¹, A. L. Butterworth¹, Z. Gainsforth¹, and A. J. Westphal¹

¹University of California Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, jillyrehak@ssl.berkeley.edu.

Motivation

Multivalence transition elements can be used to constrain the oxygen fugacity (f_{O_2}) of the solar nebula environment from which meteoritic components formed (Fig. 1). E.g., Ti³⁺/Ti⁴⁺ has been measured in CAIs, suggesting they formed under reducing, variable conditions as low as IW-8 [1-3]. Studies of Fe in ferromagnesian chondrules suggest they formed between IW-4 to IW-0.5 [4, 5].

The relationship between ferromagnesian chondrules and CAIs remains poorly understood. Al-rich chondrules may represent an important link between these components [6].

About Al-chondrules

- No single formation process can explain the variety of compositions observed in these objects [6]
- ~15% contain relict CAIs [9]
- O-isotope studies of Al-chondrules in OC and CR chondrites are conflicting:
 - Can 18O enrichment trend be produced by simple mixtures of chondrules and CAIs [11]? Or not [10]?

The V oxybarometer [7, 8, 12] may be particularly well-suited for Al-chondrules, as the V²⁺/V³⁺ buffer probes the fugacity region between Ti³⁺/Ti⁴⁺ and Fe⁰/Fe²⁺. The motivation for this research is to use oxidation state as a tracer for variations in the solar nebula environment, and to link such variations to the primitive components in chondrites.

Samples and Spectra

Pre-edge peak intensities and centroid energies of V-XANES spectra may be used to determine the valence in spinel and glass samples. Data were analyzed using the methods of [7, 8, 15]. Ti-XANES was measured in additional minerals for comparison.

K-edge XANES @ Beamline 10.3.2 ALS, Lawrence Berkeley National Lab

- Al-chondrules in Chainpur 1251-14, 1251-3 (LL3.4; Fig. 2)
 - V-XANES: Spinel in both chondrules, and glass in Chainpur 1251-3 (Figs. 3, 4).
 - Ti-XANES: Pyroxene and glass in Chainpur 1251-3
 - Previously studied for petrography, 26Al-26Mg systematics, and O-isotopes [6, 13, 14]
- CAI in Renazzo NHMW-N1126 (CR2)
 - V-XANES: Spinel; signal/noise too low to resolve pre-edge region (Fig. 3)
 - Ti-XANES: Spinel

Pre-edge peak intensities and centroid energies of V-XANES spectra for Chainpur 1251-3 and 1251-14. Solid lines show the pre-edge peaks, and the dotted lines show the spline fit of the edge-jump. The edge-jump spline fit was subtracted from the region to quantify the pre-edge peak intensity. b. Pre-edge peaks were fitted with a single Lorentzian function.

V XANES spectra

Pre-edge peak intensities of Chainpur 1251-3-1; Intensity = 25.9

Pre-edge peak intensities of Chainpur 1251-3-1; Intensity = 25.9

Fig. 2: BSE images (left) and EDX maps (right) of Al-chondrules Chainpur 1251-14-1 (top), and Chainpur1251-3-1 (bottom). Mg, Ca, and Al are shown in red, green, and blue.

V XANES spectra

V₁ = 2.5 for Chainpur 1251-14
V₂ = 2.4 for Chainpur 1251-3

EXAFS analysis of the extended spectra suggests that the V is octahedrally coordinated.

Implications for Oxygen Fugacity

Reference:

Acknowledgments: This work is funded by NASA grant NNX16A11G. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Samples provided by the Smithsonian and the Museum of Natural History Vienna.

Fig. 1: Multivalence elements and fugacity, from [1].

Fig. 2: BSE images (left) and EDX maps (right) of Al-chondrules Chainpur 1251-14-1 (top), and Chainpur1251-3-1 (bottom). Mg, Ca, and Al are shown in red, green, and blue.

V XANES spectra

V₁ = 2.5 for Chainpur 1251-14
V₂ = 2.4 for Chainpur 1251-3

EXAFS analysis of the extended spectra suggests that the V is octahedrally coordinated.

Fig. 3: (Above) V XANES spectra for Chainpur 1251-3 (red line) and 1251-14 (blue dashed line) spinel. Inset: The signal/noise ratio of the glass data was too low to resolve pre-edge peak information for Chainpur 1251-3 glass (green) and Renazzo spinel (blue).

Fig. 4: (Left) a. Pre-edge region of the V XANES spectra for Chainpur 1251-3 and 1251-14. Solid lines show the pre-edge peaks, and the dotted lines show the spline fit of the edge-jump. The edge-jump spline was subtracted from the region to quantify the pre-edge peak intensity. b. Pre-edge peaks were fitted with a single Lorentzian function.

Fig. 5: Glass V peak intensity vs. log(f_{O_2}) at 1400 °C from [7], compared to Chainpur Al-chondrules

V oxybarometer of Sutton et al. [7]

- Pre-edge peak intensity has linear correlation from -12 < log(f_{O_2}) < -9
- Intensity of V²⁺ multiplet peak assumed to be zero due to near-perfect octahedral symmetry [7]
- At log(f_{O_2}) < -12, amplitude of pre-edge peak goes to zero, V oxybarometer becomes poorly constrained (Fig. 5)

Using this oxybarometer, we can constrain the maximum Al-chondrule fugacity to log(f_{O_2}) < -12 (approx. < IW-2).

Relevance to Solar System Formation

These results indicate that the Al-chondrules formed at lower fugacity than most ferromagnesian chondrules, potentially closer to the reducing conditions of CAIs [8]. This is supported by V XANES analyses of spinel and clinopyroxene (cpx) in Allende CAIs [2, 15], where they found the V* to range from ~2.3-2.7.

The Ti-XANES spectra of the Chainpur 1251-3 Al-chondrule also support formation in an environment similar to CAIs. While the glass spectrum is dominated by Ti⁴⁺, the cpx has a significant Ti³⁺ contribution (feature near 4969 eV), comparable to cpx measured in an Allende CAI [15] (Fig. 6).

Future efforts to extend the V oxybarometer to low f_{O_2}

- Developing L-edge oxybarometer not limited by the zero-intensity V²⁺ K-edge multiplet peak
- Creating low f_{O_2} standards [18]
- Developing DFT models to yield physical insight into how valence affects the spectral properties of minerals

Fig. 6. Ti-XANES

Fig. 7. FIB section of spinel in Chainpur1251-14, prepared for L-edge XANES and development of V oxybarometer for low f_{O_2} samples.