Suspect MISS Biosignatures
- swirly filamentous textures
- hematite concretions
- black shrubby structures
- grain borings
- clusters of hematite spherules
- tufted biofilm/sinoidal structure

Future Work
- SEM observations to look for morphology consistent with microbes
- laser Raman spectroscopy to detect carbon and to confirm an organic component

Significance
- Identifying petrographic biosignatures in acid saline strata can help determine the possibility of life on Mars
- advise thin section capability in future missions to Mars

Acknowledgements
- This research was funded by NSF EAR-0719822 grant to KCB
- We thank Sofia Andeski, Brenda Bowen, Lynette Eichenlaub, Francisca Oboh-Ikuenobe, Carlos Sanchez Botero, and Stacy Story.
- We thank the Fall 2016 Sedimentary Petrology class at WVU.
- The Geological Survey of Western Australia provided logistical support.