Morphometric characterisation of eskers associated with an extant midlatitude glacier on Mars.

Frances E.G. Butcher¹, C. Gallagher², N.S. Arnold³, M.R. Balme¹, S.J. Conway⁴, S.R. Lewis¹, A. Hagermann¹

¹The Open University, UK (frances.butcher@open.ac.uk), ²University College Dublin, Ireland, ³University of Cambridge, UK, ⁴CNRS, LPG Nantes, France.

@fegbutcher

Evidence for basal melting of modern putative debris-covered glaciers (DCGs) | Plan-view geometry on Mars is extremely rare.

- Modern DCGs are likely frozen to their beds, but has this always been the case?
- Gallagher and Balme [1] identified sinuous ridges in the foreland of a late-Amazonian-aged (~150 Ma) DCG in Phlegra Montes (Figs 1-3).
- They interpreted these ridges as young eskers (Fig 4) the first of their kind identified in association with a modern DCG on Mars.

Fig 2: Regional topographic context from MOLA. Black arrows show sections of a regional graben, in which the candidate esker is located. Extent in Fig 1.

Fig 3: Context Camera (CTX) image mosaic of candidate esker in proglacial zone of the parent DCG (lineated valley fill). Extent in Fig 2.

Eskers are diagnostic of glacial melting.

• Eskers are ridges of sediment deposited by meltwater in ice-walled, typically subglacial drainage conduits, and subsequently exposed by glacier retreat (Fig 4).

Fig 4: Schematic of subglacial esker formation

We characterise candidate esker morphometry with new high-resolution 3D data

Fig 5: New High-resolution Imaging Science Experiment (HiRISE) anaglyph ESP_044804_2130 of (a) the candidate esker complex, and sections of (b) low-albedo clast-rich zone 1 ridge (c) zone 3 ridges (d) well-preserved, layered, high-albedo, sharp zone 3 ridge crossing a wrinkle ridge.

Within 40m of segment start/terminus Where ridge intersections obscure base

Fig 6: Methods: (a) oblique view of orthophoto overlain on DEM generated from HiRISE images ESP_044316_2130 and ESP_044804_2130, (b) mapped segments and plan-view geometry extraction, (c) cross-sectional profile (location shown in b) and 3D geometry extraction.

Table 1: Segment and system sinuosity statistics for Phlegra Montes candidate eskers (PM), Dorsa Argentea (DA)[4], and Canadian eskers, Earth (CA)

	Segments			Systems			
	PM	DA	CA	PM	DA	CA	,
Min	1.00	1.00	1	1.01	1.01	_	
Median	1.02	1.02	1.04	1.07	1.07	1.06	
Mean	1.05	1.04	1.06	1.08	1.10	1.08	
Max	1.22	1.75	2.21	1.25	1.91	2.45	

- Similar length and sinuosity to Canadian eskers (Fig 7, Table 1).
- Similar sinuosity to, but shorter than, <u>ancient</u> (Early Hesperian) putative eskers near Mars' south pole (Dorsa Argentea) (Table 1).
- Known candidate eskers on Mars occupy the full range of terrestrial esker lengths (10s m – 100s km).

morphometry **Cross-sectional** (**Zone 2**)

- Similar heights to Icelandic eskers (~1 - 14 m [6]) (Fig 8a).
- Widths more similar to terrestrial eskers ($\sim 10s \, \text{m} - 2 \, \text{km} \, [2,6]$) than Dorsa Argentea [4] (Fig 8b).
- Intermediate side slopes between Icelandic eskers (~11-22° [6]) and Dorsa Argentea, Mars [4] (Fig 8c).
- Lower side slopes than terrestrial eskers could result from fundamental differences in subglacial hydrology between Earth and Mars, which should be explored further.

Fig 8 (left): (a) height, (b) width, and (c) mean side slope of the Phlegra Montes candidate eskers (zone 2) and Dorsa Argentea [4]. Boxes - interquartile range, bars - range, dashed lines - median, points -

Ongoing work

Phlegra Montes candidate esker morphometry

Tests for esker-like response of ridge height to longitudinal bed slope.

NEW DCG-linked candidate esker in a similar graben setting

- Abstract #1234, this conference.
- Supports the hypothesis that elevated geothermal heat was a prerequisite for recent basal melting of mid-latitude glaciers on Mars [1].

Modelling environmental conditions required for basal melting in Phlegra Montes

 Exploring atmospheric temperature and geothermal heat scenarios using the JPL/University of California Ice Sheet System Model (ISSM) [8].

> Acknowledgements: FEGB is funded by STFC grant ST/N50421X/I and is grateful for travel support from the 2017 PSI Pierazzo International Student Travel Award. We are grateful to R.D. Storrar for the Canadian esker data.

References: [1] Gallagher, C., and Balme, M.R. (2015), Earth Planet. Sc. Lett., 431, 96-109, [2] Shreve, R.L. (1985), Geol. Soc. Am. Bull., 96, 639-646, [3] Kirk, R.L. et al. (2008), JGR Planets, 113(E3), E00A24, [4] Butcher, F.E.G. et al. (2016), Icarus, 275, 65-84, [5] Storrar, R.D. et al. (2014), Quat. Sci. Rev., 105, 1-25, [6] Storrar, R.D. et al. (2015), Earth Surf. Proc. Land., 40(11), 1421-1438, [7] Butcher, F.E.G. et al. (2017) LPSC XLVIII, Abstract #1234, [8] Larour, E. et al. (2012) JGR Earth Surf., 117(F1), F01022.