Thursday, March 24, 2016
POSTER SESSION II: PLANETARY SPATIAL INFRASTRUCTURE: PRODUCTS
6:00 p.m. Town Center Exhibit Area

Wagner R. V. Robinson M. S. LROC Team
POSTER LOCATION #519
Design and Processing of the Lunar North Pole Mosaic [#1582]
We are producing two updates to our 681 gigapixel mosaic of the lunar north pole: One with more consistent lighting, and a 2 terapixel extension out to 40°N.

Cisneros E. Paris K. N. Povilaitis R. Z. Robinson M. S.
POSTER LOCATION #520
Lunar Reconnaissance Orbiter Camera Permanently Shadowed Region Uncontrolled Mosaic and Atlas [#1663]
Abstract describing the generation of LROC NAC mosaic of PSR observations, and an atlas of individual PSR coverage.

Henriksen M. R. Manheim M. R. Speyerer E. J. Boyd A. K. Robinson M. S. **POSTER LOCATION #521**
LROC NAC Digital Terrain Model (DTM) Production [#1266]
DTMs are produced from LROC NAC images. DTM's compared to LOLA tracks have RMSEs less than LOLA uncertainties and precision better than the DTM's pixel scales.

POSTER LOCATION #522
Controlling Oblique Apollo 15 Metric Camera Images: Final Results [#1376]
We summarize our recent work to photogrammetrically control oblique photographs acquired by the Metric Camera flown on the Apollo 15 lunar mission in 1971.

Nefian A-V. Wong U. Alexandrov O. Kirk R. **POSTER LOCATION #523**
Photoclinometric Reconstruction of the Apollo Metric Camera Imagery [#2706]
Photoclinometric techniques generate high-resolution terrain models that are more detailed than most advanced stereo reconstruction techniques.

Shirley K. A. McDougall D. S. Greenhagen B. T. Glotch T. D. **POSTER LOCATION #524**
Photometric Correction for the Thermal Channels for the Diviner Lunar Radiometer Experiment [#2923]
Diviner tell me / Your thermal secrets for the / Moon’s composition.

Haase I. Wählsch M. Ankenbrand F. Kobrow M. Maslonka C. et al. **POSTER LOCATION #525**
Large Scale Mapping of the Apollo 17 Landing Site Based on Lunar Reconnaissance Orbiter Camera (LROC) and Apollo Surface Images [#1433]
Based on LROC and Apollo 17 surface images, we determined accurate astronaut and equipment positions, and created a Traverse Map, ALSEP, and station maps.

Lemelin M. Lucey P. G. Gaddis L. R. Hare T. Ohtake M. **POSTER LOCATION #526**
Global Map Products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO, and OMAT [#2994]
Global map products including the abundances of olivine, low-calcium pyroxene, clinopyroxene, plagioclase, FeO, and OMAT are available from the USGS.

Wu Y. Z. Wang Z. C. Tang X. Zhang X. M. Chen Y. et al. **POSTER LOCATION #527**
Seamless Hyperspectral High Spatial Mosaic Derived from Chang'e-1 HIM [#1405]
We showed Chang'E-1 spectral mosaic and absolute reflectance comparison with other mission. The product can be provided to users for various uses.

Lorenz C. A. Kokhanov A. A. Karachevtseva I. A. **POSTER LOCATION #528**
Morphological Study of Phobos Surface and Mapping of the Grooves [#1831]
A new GIS-catalog of the Phobos grooves was created. Using it we plan to perform detailed measurements and morphological analysis of the grooves.
Morgan G. A. Campbell B. A.
POSTER LOCATION #529
New Evaluation of SHARAD Martian Surface Roughness Data: Implications for Ice Distribution, Future Landing Sites, and Icy Galilean Moon Studies [2561]
(1) Evaluate the presence of shallow ice; (2) assess landing site safety; (3) apply our analysis of SHARAD data to the optimization of RIME operational parameters.

Tornabene L. L. Seelos F. P. Pommerol A. Hansen K. T. Segal N. et al. POSTER LOCATION #530
Analysis of Colour and Stereo Surface Imaging System (CaSSIS) Colour Capabilities and Simulated Images Generated from MRO Datasets [2695]
We present our analysis of the colour capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) onboard the ExoMars 2016 Trace Grace Orbiter (TGO).