Thursday, March 24, 2016

POSTER SESSION II: MERRILY MEASURING MOONLIGHT:
INSIGHTS FROM REMOTE LUNAR COMPOSITIONAL ANALYSIS
6:00 p.m. Town Center Exhibit Area

Kim K. J. Wöhler C. Hasebe N. van Gasselt S. Berezhnoy A. A. et al. POSTER LOCATION #442
Lunar Silicon Distribution as Observed by the Kaguya Gamma-Ray Spectrometer and Chandrayaan-1 Moon Mineralogy Mapper (M3) Calibration [#1473]
We present an investigation of the global lunar Si-distribution based on Kaguya GRS data using regression-based analysis and M3 spectral reflectance data.

Moriarty D. P. III Pieters C. M. POSTER LOCATION #443
South Pole — Aitken Basin as a Probe to the Lunar Interior [#1763]
Using M3 data, we identify, characterize, and map sub-crustal materials excavated by the SPA-forming impact. These materials are rich in high-Mg pyroxenes.

Sim C. K. Kim S. S. Lucey P. Garrick-Bethell I. Baek G. POSTER LOCATION #444
Optical Maturity of Inner Walls in Lunar Craters [#1859]
We analyze the OMAT differences between the north and south walls as well as the east and west walls of lunar craters in terms of space weathering fluxes.

Martinot M. Besse S. Flahaut J. Blanchette-Guertin J.-F. Quantin C. et al. POSTER LOCATION #445
Mapping the Lunar Crust/Mantle Boundary with the Moon Mineralogy Mapper Instrument Data [#1970]
The final goal of this study is to evaluate the lunar crust organization and compositional variations around the crust-mantle boundary at a global scale.

Wang X. Chen J. P. Xu Y. B. Zheng Y. C. Yan B. K. et al. POSTER LOCATION #446
Inversion of the Main Mineral Compositions and Subdivision of Tectonic Units on Lunar LQ-4 Based on Chang’e Data [#2102]
This abstract talks about the distribution of FeO, Al$_2$O$_3$, Plagioclase and Pyroxene on LQ-4, Sinus Iridum region, and established a tectonic system.

Grice J. P. Donaldson Hanna K. L. Bowles N. E. Schultz P. H. Bennett K. A. POSTER LOCATION #447
Investigating Young Irregular Mare Patches on the Moon Using Moon Mineralogy Mapper Observations [#2106]
Moon Mineralogy Mapper data is used to determine the maturity of two Irregular Mare Patches and compare their composition with surrounding mare and craters.

Donaldson Hanna K. L. Evans R. Bowles N. E. Schultz P. H. Greenhagen B. T. et al. POSTER LOCATION #448
Investigating Young (<100 Million Years) Irregular Mare Patches on the Moon Using Diviner Observations [#2127]
Irregular mare patches (IMPs) and their surrounding mare materials are investigated using thermal infrared observations from Diviner onboard LRO.

Identifying and Characterizing Impact Melt Outcrops in the Nectaris Basin [#1389]
A dusty jewel / Witness to cataclysm / tempts us to visit.

Chen J. Ling Z. C. Li B. Zhang J. Sun L. Z. et al. POSTER LOCATION #450
Lunar Global Aluminum Map: Results from Chang’e-2 Gamma Ray Spectrometer [#3022]
Lunar Al map from Chang’e-2 gamma ray spectrometer.
Staid M. Sunshine J. Besse S.
POSTER LOCATION #451

Mapping Relative Olivine Content in Mare Basalts Using M^3 Data [#2531]

The relative olivine content of mare basalts is examined by applying MGM modeling to the reflectance properties of small, optically immature craters.

Coman E. O. Jolliff B. L. Carpenter P.
POSTER LOCATION #452

Maturity Effects on UV/VIS Ratio and Implications for TiO_2 Detection Using LROC WAC [#2497]

Mature soils exhibit UV/VIS ratios affected more by ilmenite than maturity; when LROC WAC detects these soils, 321/415 ratio and TiO_2 are well correlated.

POSTER LOCATION #453

Constructing Lunar Neutron Flux Maps with LRO/LEND Natural Resolution [#3065]

Wee lunar neutrons / Made by cosmic ray impact / Map the globe, you dig?

Wu Y. Z. Tang X. Zhang X. M. Chen Y. Cai W.
POSTER LOCATION #454

An Unusual Geology of Mare Imbrium and Implication to the Global Evolution [#1406]

We reported our multi-year research for northern Imbrium, showing unusual geology with mafic highlands, olivine rich basalts, young ridges, ripple, and mounds.

Liu C. Q. Ling Z. C.
POSTER LOCATION #455

Distributions of Mineral Assemblages and Rock Types of the Lorentz Basin Revealed by Moon Mineralogy Mapper Data [#2886]

Lorentz is an archaic basion of Nectarian age, with anomalies. The mineral assemblages are a key to understand early history of lunar crustal evolution.

Hirata N. Hareyama M. Ishihara Y. Yokota Y. Nakamura R. et al.
POSTER LOCATION #456

Spectral Characteristics of Possible Ejecta Deposits on the Antipode and Its Surrounding of Tycho Crater [#1903]

Multi spectral data of the Tycho antipode region is examined to describe spectral characteristics and regional extent.

McBride M. J. Horgan B. H. N. Gaddis L. R.
POSTER LOCATION #457

Revisiting the Mineralogy of the Aristarchus Regional Pyroclastic Deposit with New M^3 Analysis Techniques [#3052]

Mapping minerals / Large volcanic deposit / All about that glass.

Bandfield J. L. Edwards C. S. Poston M. J. Klima R. L.
POSTER LOCATION #458

Lunar H_2O/OH—Distributions: Revised Infrared Spectra from Improved Thermal Corrections [#1594]

New thermal corrections of M^3 data result in a much more prominent absorption near 3 microns. Initial results show no variation with latitude and local time.

Chen J. P. Wang X. Gao G. D. Yao M. J.
POSTER LOCATION #459

On the Methodology of Lunar Lithological Classification Based on Spectral Characteristics as Exemplified from Apollo16 Moon Landing Area [#1343]

The Apollo16 landing area was covered by melted anorthosite in the north, breccia in the south, and granitic basalts distributed zonally from north to south.

Antonenko I.
POSTER LOCATION #460

Applying Predictive Financial Risk Models to the Identification of Lunar Basalt Spectra [#2948]

Bank risk models can help identify basalt spectra in lunar data.

POSTER LOCATION #461

Mapping the Lunar Phase Function in the Near-Infrared with the Lunar Orbiter Laser Altimeter [#1999]

The Lunar Orbiter Laser Altimeter is mapping the near-infrared phase function of the Moon using active and passive radiometry.
Vance A. M. Christoffersen R. Keller L. P. Berger E. L. Noble S. K. POSTER LOCATION #462
Evolution of Shock Melt Compositions in Lunar Regoliths [#2852]
High iron content / In agglutinitic glass / Where does it come from?

Schaub D. R. Sinclair A. Lindsley D. H. Nekvasil H. Glotch T. POSTER LOCATION #463
Synthesis of “Large” Pigeonite Crystals for Lunar Spectroscopic and Space Weathering Studies [#2352]
We have determined a suitable protocol for synthesizing gram quantities of pigeonites with usable grain sizes for use as standards in remote sensing.

Miura Y. Tanosaki T. POSTER LOCATION #464
Carbon on the Moon: Contribution of Dark Color for Moon Surface Rocks [#1415]
Color on the Moon can be caused by carbon contents studied from the Moon and Earth samples with laser experiment. Impacted Moon shows carbon-bearing dark color.