Chairs: Noam Izenberg
Asmaa Boujibar

1:30 p.m. Parman S. W. * Parmentier E. M. Wang S.
Crystallization of Mercury’s Sulfur-Rich Magma Ocean [#2990]
Solidification of Mercury’s sulfide-rich magma ocean may have produced a buoyant sulfide primary crust. This would have slowed cooling of the planet.

The Origin of Mercury’s Surface Composition, an Experimental Investigation [#2925]
Mercury’s surface / High pressure experiments / Polybaric melts.

2:00 p.m. Lawrence D. J. * Peplowski P. N. Beck A. W. Feldman W. C. Frank E. A. et al.
Compositional Terranes on Mercury Derived from Measurements of Fast Neutrons [#1253]
Fast-neutrons at Mercury delineate four compositional terranes, and show a unique signature at Hokusai crater, which is one of the youngest craters on Mercury.

Diffuse Reflectance FTIR and Raman Spectroscopy of Synthetic Glasses with Mercury Surface Composition for the BepiColombo Mission [#2136]
We present mid-infrared spectra of synthetic glasses with chemical composition based surface areas on Mercury for the BepiColombo ESA/JAXA mission.

2:30 p.m. Trang D. * Lucey P. G. Izenberg N. R.
Mapping of Submicroscopic Carbon and Iron on Mercury with Radiative Transfer Modeling of MESSENGER VIRS Reflectance Spectra [#1396]
Submicroscopic carbon is necessary to successfully model the VIRS reflectance spectra. We produced submicroscopic carbon and iron abundance maps.

Global Distribution and Spectral Properties of Low-Reflectance Material on Mercury [#1195]
Distinctive low-reflectance material, mostly excavated by craters, is present on Mercury. We assess the spectral properties and distribution of these exposures.

3:00 p.m. Thomas R. J. * Hynek B. M. Rothery D. A. Conway S. J. Anand M.
Hollows as Evidence for the Nature and Source of Mercury’s Low-Reflectance Substrates [#1109]
The spectral character of Mercury’s hollows indicates that the low reflectance of widespread surface units does not derive from their volatile component.