Monday, March 21, 2016

PLANETARY DIFFERENTIATION: SO METAL

2:30 p.m. Montgomery Ballroom

Chairs: Etienne Médard
Kathleen Vander Kaaden

2:30 p.m. Duncan M. S. * Dasgupta R.
Experimental Constraints on Carbon Solubility in Terrestrial Magma Oceans: Implications for the Efficiency of Early Carbon Cycling on Earth and Mars [#1774]
Experiments show / Carbon in magma oceans / Degas at low P.

2:45 p.m. Steenstra E. S. * Lin Y. H. Rai N. Jansen M. van Westrenen W.
Carbon as the Dominant Light Element in the Lunar Core [#1842]
Geochemical arguments suggest carbon, not sulfur is the dominant light element in the lunar core.

Carbon Solubility in Si-Fe-Bearing Metals During Core Formation on Mercury [#1474]
Mercury’s carbon / Will it go into metal? / Depends on Si.

High Concentrations of Highly Siderophile Elements were Stripped from Earth’s Mantle by the Segregation of Exsolved Iron Sulfide Melt [#1112]
Contrary to conventional wisdom, segregating metal increases HSE concentrations in Earth’s mantle during core formation because of effects of P, T, and S content.

3:30 p.m. Wang Z. * Laurezn V. Petitgirard S. Becker H.
Earth’s Moderately Volatile Element Composition May Not Be Chondritic: Evidence from In, Cd, and Zn [#1219]
Indium, Cd, and Zn abundances in silicate Earth and high P-T metal-silicate partitioning data are combined to discuss volatile element composition of bulk Earth.

3:45 p.m. Righter K. * Pando K. Danielson L. R. Humayun M. Righter M. et al.
Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation [#2116]
Measured activity coefficients in Fe-Si liquids show that high PT equilibration of Earth’s mantle with a Si-bearing core can explain mantle In, Ge, As, and Sb.

4:00 p.m. Fei Y. * Shibazaki Y.
Compositions and Mobility of Metallic Immiscible Liquids at High Pressure and Temperature: Implications for Differentiation of Small Planetary Bodies [#1719]
We examine melting behavior and composition of immiscible liquids in the Fe-Ni-S-O-Si system and percolative behavior of immiscible liquids in olivine matrix.

4:15 p.m. Jacobson S. A. * DeMeo F. Morbidelli A. Carry B. Frost D. et al.
There’s Too Much Mantle Material in the Asteroid Belt [#1895]
The ratio of crust to mantle material in the asteroid belt indicates that these bodies originate as ejecta from giant impacts on the growing terrestrial planets.

4:30 p.m. Lunning N. G. * McCoy T. J. Corrigan C. M.
Consequences of Hercynite Crystallization During Differentiation of CV Chondrite-Composition Parent Bodies [#1682]
Hercynite may crystalize and segregate from silicate partial melts, keeping 26Al in planetesimal interiors during differentiation under oxidizing conditions.