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Introduction: The recent New Horizons observations 
have fundamentally changed thinking about Pluto. The 
geology on Pluto has a rich variety of terrains that dif-
fers from other largely icy bodies. Mountains and 
plains are surprisingly common, and parts of the sur-
face appear young due to the lack of a large number of 
craters [1]. Atmospheric activity, i.e. condensing and 
vaporizing hydrocarbons, and glacial flow of N2, CO, 
or CH4 ices at Pluto surface conditions [1] may drive 
widespread resurfacing. Geological activity could also 
remove craters through processes such as cryo-
volcanism and convection of N2 ices, if Pluto is warm 
enough to drive it.  

Pluto should be a solid, cold body given its size 
and temperature flux through its surface over 4 billion 
years. However, a giant impact event, such as the one 
that created Earth's moon, likely created the Pluto-
Charon system [2] [3] [4]. These giant impacts impart 
massive amounts of energy into bodies that can melt 
large portions of the planet [5]. However, the impact 
energy is not deposited homogeneously. Material 
strength increases the localization of shock energy 
during giant impact events [7]. Although the size of 
these impacts is firmly in the gravity-dominated re-
gime for transient crater formation, the final spatial 
distribution of impact energy is dominated by the re-
sidual strength of materials, leading to a localization of 
impact energy. Therefore, we include a state of the art 
rheology model in this work [6]. Here, we consider 
two classes of impacts: giant impacts that could have 
formed the Pluto system and basin-forming impacts 
that could have generated long-lived large-scale struc-
tures on Pluto, such as Sputnik Planum.  

The thermal evolution after an impact event will 
be sensitive to the temperature distribution in the post-
impact state. Here, we show preliminary results of im-
pact calculations including material strength. Strength 
affects the final distribution of impact energy in the 
post-impact body as shown in simulations of a colli-
sional origin of the Haumea system [7]. Finally, we 
present calculations for the cooling rate of the thermal 
profile of the post impact state. 
Numerical Method: We conducted impact simula-
tions using the 3D Eulerian shock physics code CTH 
[8], including self-gravity [9]. Ice and rock were mod-
eled using multi-phase equation of states for water [10] 
and forsterite [11]. The pressure, temperature, and 
strain-rate dependent rheological model includes a 
brittle regime for the crust and uppermost mantle [12, 
13] and a creep regime for the deeper mantle [14]. The 
rheological model weakens ice at the melting curve of 
water. The peridotite solidus and olivine liquidus are 

used to calculate melting of rock [15]. Crater collapse 
involves a two-phase flow of melt and solid clasts. 
This complex debris flow is modeled using a simpli-
fied approach: when the temperature exceeds the soli-
dus, (i) a pressure-dependent friction law (coefficient 
of 0.1–0.2 based on melt-lubricated faults [16]) is used 
at high strain rates (>10-4 s-1) and (ii) a Newtonian fluid 
rheology is used at low strain rates (when the viscosity 
of the fluid dominates [17]). Model parameters are 
constrained by laboratory data. 

For this initial study, we considered nominal giant 
impact and basin-forming impact scenarios (Figure 1). 
In the first case, a Pluto sized object is initialized along 
with a 300 km radius dunite projectile impacting head 
on to 45 degrees. The nominal internal structure for 
Pluto has a rock/icy core to ~850 km radius, with an 
ice mantle extending to 1200 km. The second kind of 
simulation involves two half Pluto mass objects with 
similar proportions of rock-ice, impacting each other at 
approximately 45 degrees. Temperature profiles are 
varied because there is a temperature dependence in 
the rheological model.  

Thermal evolution is calculated for the post im-
pact state, taking into account heat generation by radi-
oactive elements with CI chondrite abundances [18]. 
We use the heat equation to solve for heat diffusion. 
Heat loss is assumed to be through grey body radia-
tion. We calculated one and two-dimensional solu-
tions. The post-impact state is evolved over billion 
year time scales to find the rate at which localized 
heating diffuses to its surroundings and is lost to space. 
Sputnik Planum Impact Hypothesis: The lack of 
impact craters on the informally named Sputnik 
Planum suggest recent resurfacing within the last 10 
million years, whereas the rest of Pluto is ancient [19]. 
It has been shown that the surface in Sputnik Planum is 
primarily composed of N2 ice. Nitrogen ice is extraor-
dinarily weak and can convect with a small heat flux 
[20]. Therefore, Sputnik Planum is likely the site of a 
large plain of convecting nitrogen ice.  

The localization of the convecting phenomena 
could be explained by the residual heat from a single 
basin-scale impact event. Figure 1 shows the results of 
a simulation of such an impact. Our calculations show 
that heating by the impact is substantial as well as lo-
cal. Thus, an impact may provide the modification of 
Pluto’s crust to allow for a contained plain of nitrogen 
ice. Furthermore, we present thermal evolution calcu-
lations that show heating may be long lasting enough 
to drive convection in nitrogen ices billions of years 
after the impact. 
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Figure 1: Results of Pluto impacted by a 400 km dun-
ite (brown) projectile at 3 km/s with a strength model. 
The model Pluto has a rocky/ice core with a radius of 
850 km (gray), and an ice shell with a radius of 1200 
km (orange). The final thermal profile shows localized 
heating of Pluto with a peak temperature increase of 
approximately 1000 K. Disregarding strength in simu-
lations causes more mixing and “sloshing” that leads to 
more homogenous energy deposition. 
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