STACKING DEFECTS IN SYNTHETIC AND METEORITIC HIBONITES: IMPLICATIONS FOR HIGH-TEMPERATURE PROCESSES IN THE SOLAR NEBULA. J. Han, L. P. Keller, A. J. Brearley, and L. R. Danielson. Lunar and Planetary Institute, Houston, TX 77058, USA (jangmi.han@nasa.gov), ARES, NASA/JSC, Houston, TX 77058, USA. Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA. Jacobs JETS, NASA/JSC, Houston, TX 77058, USA.

Introduction: Hibonite (CaAl$_2$O$_4$) is a primary, highly refractory phase occurring in many Ca-Al-rich inclusions (CAIs) from different chondrite groups, except CI chondrites [1]. Hibonite is predicted to be one of the earliest minerals to condense during cooling of the solar nebula at higher temperatures than any other major CAI mineral [2]. Therefore, hibonite has great potential to reveal the processes and conditions of the very early, high-temperature stages of the solar nebula evolution.

Previous microstructural studies of hibonite in CAIs and their Wark-Lovering (WL) rims showed the presence of numerous stacking defects in hibonite. These defects are interpreted as the modification of the stacking sequences of spinel and Ca-containing blocks within the ideal hexagonal hibonite structure [3,4], as shown by experimental studies of reaction-sintered ceramic CaO-Al$_2$O$_3$ compounds [5]. We performed preliminary experiments in the CaO-Al$_2$O$_3$-MgO system to understand the formation processes and conditions of defect-structured hibonite found in meteorites.

Methods: Two experiments were prepared by allowing pure alumina crucibles to react with (1) 2CaO-Al$_2$O$_3$ eutectic melt and (2) 2CaO-Al$_2$O$_3$ eutectic melt with 5 wt% MgO in a high-temperature box furnace at 1,530°C for 4 hours, followed by air quenching. The run products were cut, mounted in epoxy, and polished for detailed petrologic and mineralogical descriptions using a JEOL 7600F field emission SEM and a JEOL 8530F electron microprobe. A TEM section wasextracted from hibonite in the reaction zone of the run products using a FEI Quanta 3D Field Emission Gun SEM/FIB instruments. The sections were then examined for micro-to-nanometer scale structural and chemical characterization by a JEOL 2500SE field-emission scanning TEM equipped with a Thermo-Noran thin window energy dispersive X-ray (EDX) spectrometer.

Results: Experiment (1) in the CaO-Al$_2$O$_3$ system. The reaction zone adjacent to the alumina consists of distinct mineral layers of a series of calcium aluminates from hibonite (5-60 µm thick), grossite (30-70 µm thick), to krotite with a melt residue (Fig. 1a). Hibonite, grossite, and krotite are pure CaAl$_2$O$_4$, Ca$_2$AlO$_3$, and Ca$_3$Al$_2$O$_6$, respectively.

The FIB section 1-1 consists of compact aggregates of hibonite laths that share common elongation directions with rounded corundum inclusions. Electron diffraction patterns of hibonite grains are well-defined with uniform d-spacings, indicative of the presence of ordered, stoichiometric hibonite. Most hibonite crystals are free of defects, but a few grains contain a very low density of stacking defects parallel to the c axis. Lattice fringe images of hibonite grains show isolated, single layers of 2.6 nm (001) spacing within ordered hibonite of 2.2 nm (001) spacing. Quantitative EDX analyses show that hibonite grains have a uniform composition of pure CaAl$_2$O$_4$, but defect-rich areas in hibonite show Ca deficiencies up to ~8 mol%.

Experiment (2) in the CaO-Al$_2$O$_3$-MgO system. Like experiment (1), this experiment produced the similar mineral sequence of hibonite (5-25 µm thick), grossite (1-15 µm thick), to krotite with a melt residue (Fig. 1b). An important difference is that the addition of Mg stabilized spinel in two occurrences; (1) spinel laths intergrown with hibonite and (2) euhedral spinel crystals in the melt residue. Hibonite contains 0.16-0.25 wt% MgO. Grossite and krotite are pure CaAl$_2$O$_7$ and Ca$_3$Al$_2$O$_6$, respectively. While spinel grains in the krotite-melt mixture are nearly pure MgAl$_2$O$_4$, spinel grains intergrown with hibonite show significant enrichments in Al$_2$O$_3$ with 2.14-2.20 Al cations per 4 oxygen anions.

The FIB section 2-1 consists of compact intergrowths of randomly-oriented hibonite laths and spinel grains (Fig. 2). In contrast to defect-free spinel, hibonite contains abundant stacking defects parallel to the c axis. Electron diffraction patterns of hibonite show strong streaking along the c axis, indicating the presence of stacking disorder. The stacking disorder is readily apparent in lattice fringe images of hibonite.
grains that show random intergrowths of various (001) spacing ranging from 2.6 nm to 3.7 nm within prominent 2.2 nm (001) spacing. In addition, a crystallographic orientation relationship exists between hibonite and spinel. Analysis of electron diffraction patterns from two sets of hibonite and spinel yields (001)_{hibonite}//(111)_{spinel}. Quantitative EDX analyses reveal that defect-rich areas in hibonite are enriched in MgO relative to defect-free, ordered areas in hibonite. Spinel is a solid solution of Al_2O_3-MgAl_2O_4 with ~20 mol% excess Al_2O_3.

Discussion: The hibonite in the run products has several similarities to that in CAIs and their WL rims; (1) the presence of stacking defects and correlated compositional variations in hibonite [3,4,6,7], (2) the crystallographic orientation relationships between intergrown hibonite and spinel [4,6], and (3) the presence of excess Al_2O_3 in spinel [8,9].

The occurrence of spinel in crystallographic continuity with MgO-bearing hibonite in FIB 2-1 demonstrates that spinel nucleated onto hibonite due to their structural similarity [12]. A significant excess of Al_2O_3 in spinel intergrown with hibonite is observed in FIB 2-1 and is consistent with a thermodynamic mixing model that predicts up to 30 mol% Al_2O_3 in Al_2O_3-MgAl_2O_4 spinels at 1530°C [13]. The presence of cordierite as a reactant and the high Al_2O_3 contents of coexisting melt in experiment (2) appear to increase the solubility of Al_2O_3 in MgAl_2O_4 spinel [9,13], forming the solid solution series of Al_2O_3-MgAl_2O_4 spinel. Additionally, in comparison with experiment (1) that produced fairly similar widths of hibonite and grossite, experiment (2) produced a significantly narrower layer of grossite relative to that of intergrown hibonite and spinel. The depletion in Al due to the formation of Al-rich spinel may have limited the formation of grossite.

Conclusions: Our preliminary experiments in the CaO-Al_2O_3 and CaO-Al_2O_3-MgO systems produced hibonite that contains stacking defects similar to those observed in meteoritic hibonites. A much higher defect density in MgO-bearing hibonite suggests that the substitution of Mg with Al in the S blocks stabilized the formation of wider S blocks (i.e., defects). The observed structural and compositional similarities between synthetic and meteoritic hibonite suggest that the metastable, defect-rich hibonite is more stable than stoichiometric hibonite in high-temperature melts.

Acknowledgements: This research was supported by grant 10-COS10-0049 to L.P. Keller (PI).

Figure 2. Bright-field scanning TEM image of hibonite laths intergrown with spinel (outlined in dotted lines) in FIB 2-1.