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Introduction:  Water has been detected on or near 

the Martian surface by a variety of instruments [1]–[4], 

however the nature of that water remains an open ques-

tion. Solid H2O in the form of ice has been observed in 

northern and southern high latitudes by several instru-

ments [5], [6] and by the phoenix lander in 2008 [7], it 

has also been suggested to occur in lower latitudes in 

the form of regolith mantled subsurface ice [8], [9]. 

H2O has also been observed to be a chemical constitu-

ent of minerals in both high latitudes [10] and equato-

rial regions [11]. There is even potential for transient 

liquid water in equatorial regions in the form of ob-

served slope lineae [12], [13] and predicted perchlorate 

deliquescence brines [14]. Given that H2O is seen in 

such a variety of forms and settings, one must carefully 

assess the nature of H observed via remote sensing, 

where observations cannot always be placed in a spe-

cific geologic context. Observations from the GRS 

instrument provide a global picture of elemental abun-

dances in the shallow subsurface of Mars. The varia-

tions seen at these depths (10s of centimeters) and spa-

tial resolution (5OX5O) are subtle, requiring extensive 

work to draw out only a few areas of interest [15]–[17]. 

While there are many multivariate methods that have 

been used in analyzing remote sensing data [17], pre-

vious work [16], [18], [19] has shown that Principal 

Component Analysis (PCA) is well suited for sensing 

subtle variations present in remote sensing and in situ 

data and localizing chemical anomalies. Here, PCA is 

used to assess the correlation between H2O and other 

elements in the shallow subsurface of Mars. This is 

motivated in part by previous work [20], suggesting a 

meaningful correlation between H2O and S in Martian 

regolith. This new analysis will further the previous 

work, investigating whether this correlation presents 

itself naturally in the data. 

Methods: Currently, there are 9 elemental maps 

that have been generated from GRS data, Al, Ca, Fe, 

Cl, S, H (from which H2O maps are derived), K, Th, 

and Si. These nine elemental datasets are combined 

with Ruff and Christensen’s Dust Cover Index 

(DCI)[21] to form a 10-dimensinal dataset that covers 

all of mars, excluding the polar regions. To analyze our 

data, multivariate analysis techniques are applied to 

reduce the significant dimensionality of the data. Two 

of the most prominent methods available are Independ-

ent Component Analysis (ICA) [22] and Prinicipal 

Component Analysis (PCA) [16], [19], however we 

found that PCA was better suited to drawing out poten-

tial mineral components. The elemental distributions 

seen by the GRS instrument are roughly Gaussian [4], 

it follows that the mineral assemblages that generate 

these elemental signals are distributed in a Gaussian 

fashion. While ideal for drawing out non-gaussian 

components [17], ICA will disfavor Gaussian compo-

nents, where PCA will generate components that are 

generally Gaussian, consistent with the expected distri-

bution of hydrated minerals on Mars. PCA was imple-

mented in the Python [23] language using matplotlib 

[24]. The primary result of PCA is 10 orthonormal 

axes, called Principal Components (PCs) that describe 

the data more succinctly than the original axes. In ana-

lyzing the GRS+DCI combined data, the first 2 PCs 

typically describe over 50% of the variance in the da-

taset. Therefore, our primary analyses is based on these 

two PCs in order to focus on bulk soil properties that 

are prevalent across regional scales. It is worth noting 

that it is difficult to gain extensive insight from indi-

vidual principal components. In general, it is unlikely 

that any one PC will represent a certain mineral or even 

mineral assemblage. As such, covariance between two 

elements in one PC, or even in many PCs in one analy-

sis is not sufficient to interpret a mineralogical correla-

tion. For this reason, our analysis examines correlation 

between elements within PCs in both global analysis 

and sub-regional analyses. 

Error Incorporation. To incorporate error, we 

chose to use the modified test parameter, t [15]. 

 
Where xi is the mass fraction of a particular element 

in the ith bin,  is the average value of that element,  

is the error of the ith bin, and s is the standard devia-

tion of the element distribution across the masked re-

gion (excluding poles). Processing the data before the 

PCA process allows the incorporation of error without 

modifying the standard PCA procedure. 

Enriched and Depleted Zones. In our analysis PCA 

is applied to several subsets of the data. To separate 

these regions, a mask is applied to the “global” data, 

selecting regions that are above +1 or below -1 in terms 

of t-values, roughly representing 1 standard deviation 

above or below the mean. These enriched and depleted 

regions are used to identify chemically “atypical” re-

gions of Mars. Examinations of these smaller regions 

will inform us of covariations at a local scale. These 

covariations are not necessarily representative of re-
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gional properties, but occur in a more restricted geo-

logic context. With the overall trends observed in glob-

al analyses, and the local variations observed in the 

enriched and depleted zones, we will be able to create 

an accurate picture of elemental covariance in soil at 

both scales 

Similarity Analysis using the Dot Product. The 

PCA process projects the original data into a new, or-

thonormal space. In this space, Euclidian geometry and 

distance have similar meaning to that  in typical 3-D 

space. Therefore, the angle between the vectors of a 

given element in PC-space can be used as a descriptor 

of the similarity of those two elements in PC-space. 

Elements with a small relative angle and a similar 

length in PC-space can be considered covarying. Simi-

lar comparisons were made by Gasnault et al. [16], 

however only in a qualitative fashion.  

Figure 1.  A biplot of PCA results from analysis on 

the Southern Highlands of Mars. White circles repre-

sent the elemental data projected into PC1 and PC2, 

black squares represent elemental axes projected into 

PC1 and PC2. Note the similarity in size and direction 

of the H2O and S Vectors. 

Discussion: In several settings on Mars strong cor-

relations are observed between H and S. These correla-

tions persist independent of the size, elemental compo-

sition, and geologic context of the analyzed regions. 

This suggests that, across the surface of mars, the con-

centration in H and S covary and are a significant con-

trol on variation in martian soil. We interpret this to 

show that a group of hydrated sulfate minerals have a 

strong effect on variation in soil composition across the 

surface of Mars and are the dominant reservoir of 

chemically-bound H2O in martian soil. Across every 

analyzed region, S is never more than 45 degrees away 

from H2O, and only greater than 30 degrees in two 

regions. This suggests that apart from being consistent-

ly hydrated in the martian subsurface, sulfate minerals 

are the best candidate to be the primary hydrator. Pre-

vious work [20] has suggested, using molar ratios, that 

the correlation between H and S is well described using 

a variety of Fe-sulfates with H2O:S ratios near 3:1. 

Unfortunately, two of the common sulfate cations de-

tectable with GRS (Fe, Ca), lack strong correlations 

with H2O. This lack of observed correlation may sug-

gests that neither Fe-Sulfates, nor Ca-sulfates are the 

mineral of choice to describe the observed H2O-S cor-

relation. Mg-sulfates also provide appropriate H2O:S 

ratios, however Mg remains undetectable by GRS, and 

cannot be incorporated into this analysis. Nevertheless, 

our results do not provide strong evidence toward or 

against any particular sulfate mineral candidate. 
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