
1LPGN/CNRS, UMR6112, Université de Nantes, France, nicolas.mangold@univ-nantes.fr, 2Planetary and Space Science Centre, Department of Earth Sciences, Univ. of New Brunswick, Canada, 3IRAP/CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 4GéoRessources, Université de Lorraine, Nancy, France, 5LANL, Los Alamos, NM 87545, USA, 6Towson University, Towson, MD, USA, 7PSI, Tucson, AZ 85719, USA, 8USGS, Flagstaff, USA, 9JPL, California Institute of Technology, Pasadena, CA, USA, 10LGL, Université de Lyon, 69364 Lyon, France, 11University California Berkeley, USA, 12MSSS, San Diego, CA 92121, USA, 13Oregon State University, Corvallis, Oregon, USA, 14University of Guelph, Guelph, Ontario N1G 2W1, Canada, 15CalTech, Pasadena, CA, USA, 16Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA, 17Department of Geosciences, State University of New York, Stony Brook, NY, USA, 18Institute of Meteoritics, Department of Earth and Planetary Sciences, Albuquerque, NM, USA, 19IMPMC, MNHN, Paris, France, 20University of California, Davis, USA.

Introduction: Among sedimentary rocks, conglomerates are those which are the least altered and the least sorted and therefore provide the most direct knowledge of the source of sediments. Preserved clasts enable a direct look to the texture and composition of the source rock. This study aims to analyze the chemistry of conglomerates in order to understand the variability in composition of the source rocks and their relevance for understanding the martian crust. Conglomerates are also a fundamental link between the source rocks and the finer-grained sediments. We provide an analysis of conglomerates as the source of finer-grained fluvial sediments (i.e., sandstones and mudstones) analyzed at our field sites Yellowknife Bay, Kimberley and Pahrump Hills[1].

Observations: This study is focused on observations taken between landing and the arrival at Mt. Sharp (sol=800). The first conglomerate outcrops encountered by Curiosity were isolated, well-indurated blocks that had pebbles up to 4 cm in diameter [2]. These conglomerates were observed on Bradbury Rise in the immediate vicinity (<200 m) of the landing site before reaching Yellowknife Bay. Progressing out of Yellowknife Bay (sols 330-390), the conglomerates of the hummocky plains appeared more often as limited exposures and as outcrops with well-exposed sections at the Darwin field site (Figure 1, sols 390-400). After Darwin, conglomerate outcrops were analyzed less frequently due to the decreased occurrence of outcrops and an increasingly rugged traverse on a different surface from the hummocky plains. A few outcrops were analyzed around the Kimberley field site (sols 550-650) and before arriving to the Pahrump field site (<sol 750). Overall, the presence of conglomerates is consistent with an interpretation of fluvial sedimentation, as interpreted at the Bradbury landing site [2], but the detailed depositional style may have varied from fluvial to denser flows with less sorting and rounding.

Figure 1: Images of the conglomerates of Darwin outcrop (sol 390). (a) Mosaic of MastCam images. White dots indicate ChemCam only targets. Black dot indicates APXS only targets. Yellow dots indicate common APXS and ChemCam targets. (b) Close-up of the Altar Mountain target (MastCam image); (c) Close-up on the Bardin Bluff target (mosaic of MAHLI images). The arrow to the right of the image indicates the pebble over which APXS was centered.

Chemistry: ChemCam data were acquired on 40 targets spread along the rover traverse from which 6 targets have also been analyzed by APXS. Chemistry of the 40 ChemCam targets recognizes two main groups: samples exposed across the hummocky plains map unit and at Darwin, and a smaller group of conglomerates analyzed in the Kimberley area, located at a higher elevation. Further targets acquired after Kimberley, exposed at even higher elevations, suggest a chem-
ical mixing relationships between these two end-members. Local measurements on the Darwin type conglomerates show the predominance of plagioclase mineralogy, with presence of alkali feldspars, in agreement with the high Na$_2$O/K$_2$O ratio of 5 to 10. The ChemCam analysis suggests the absence of feldspahoids such as nepheline or leucite. The Kimberley type conglomerates are distinct from the Darwin type conglomerates because they show a much higher potassium and iron content and a much lower Na$_2$O/K$_2$O ratio (<2). Individual analyses point towards the presence of alkali feldspars, including anorthoclase and sanidine. An explanation of the K-rich component being present as leucite is not supported by the data due to the low Al/Si ratio (<0.5) at these locations.

Comparison with Mars crustal average: The entire dataset of 40 conglomerates display a significant difference relative to the bulk martian crust, especially higher alkali and aluminium, both with ChemCam and APXS (Figure 2). Apart from the Gale rocks, only those of the Columbia Hills at Gusev, presumed to be Noachian in age, display higher alkali content than the average crust, but with relatively low SiO$_2$ content [e.g., 3]. All post-Noachian data consist of basaltic rocks of which those from the Gusev plains are typical of Hesperian-aged examples. Typical Hesperian and younger rocks plot at lower SiO$_2$ and total alkalis relative to the average crust (Figure 2), whereas conglomerates plot at higher values. Conglomerates provide a possible representative composition for a Noachian component of the crust at Gale crater. Float rocks observed during the rover traverse have diverse compositions, including felsic compositions corresponding to lighter-toned rocks with frequent coarse or porphyritic textures [4]. Many float rocks have compositions consistent with pebbles weathered out from conglomerate outcrops, but a minor part may have been transported ballistically by impacts and may sign other sections of the Noachian crust.

Comparison with finer-grained sediments analyzed by Curiosity at Gale crater: The composition of fine-grained sediments at Pahrump Hills (Murray formation) is consistent with a source similar to a mixing of the two types of conglomerates defined in our study with only small modifications, such as a slight enrichment in MgO observed by ChemCam. Mg-rich diagenetic features have been observed at Pahrump Hills [5] and may have contributed to this overall enrichment. For the Yellowknife Bay formation, the strong differences between the composition of both conglomerates and that of finer-grained sediments cannot be explained by a single process. If these sediments are derived from conglomerates only, both physical sorting and Mg-enrichment from circulating fluids (and/or Mg cements) may explain the systematic shift towards higher Mg compositions. At Kimberley, the specific high-K proportion of Kimberley type conglomerates is consistent with a similar source for conglomerates and finer-grained sediments [6]. Authigenic K-feldspars in fine-grained sandstones is unnecessary given their presence in conglomerates.

![Figure 2: TAS diagram of all conglomerate data (green and yellow plots) compared to some previously published data for the martian crust.](http://pds-geosciences.wustl.edu/missions/msl)