
GEOCHEMISTRY, THERMAL EVOLUTION, AND CRYOVOLCANISM ON CERES WITH
A MUDDY ICE MANTLE. M. Neveu and S. J. Desch. School of Earth and Space Exploration,
Arizona State University, Tempe, AZ 85287, USA. (mneveu@asu.edu).

Introduction: Interpretation of data acquired
at Ceres by the Dawn spacecraft demands a model
for the evolution of Ceres’ structure and composi-
tion to date. In a recent paper [1], we presented
such a model, consistent with pre-Dawn observa-
tions and preliminary data returned by Dawn. Here,
we describe this model, compare its physico-chemical
outcomes to reported observations, and outline pos-
sible tests by ongoing Dawn measurements.

Internal structure: Constraints on Ceres’ den-
sity and structure come from its mass of 9.4× 1020

kg [2], size, shape (assuming Ceres is hydrostatic)
of ≈ 482 × 480 × 446 km [3], and gravity measure-
ments [3,4]. These suggest a bulk density near 2150
kg m−3, with a central density concentration [3].
Following [5,6], we assume that Ceres accreted ice
and both µm- and mm-sized rock particles (mostly
silicates and organics), and that micron-sized fines
stayed suspended in liquid during differentiation,
yielding a core of chondrules and a mantle of mixed
ice and fines (“mud”). This assumption reconciles
apparently conflicting observations of Ceres’ near-
surface composition: on one hand, it appears icy,
exhibiting little large-scale topography [2]; pit craters
suggestive of volatile basement material [7]; a low
simple-to-complex crater transition diameter [7]; flows,
domes, and evidence for glacial mass wasting [8];
and production of water vapor [9]. It also lacks a
collisional family, possibly because icy mantle frag-
ments sublimate after ejection [10]. On the other
hand, Ceres’ surface is dark and uniform, with mean
geometric albedo < 0.1 [11,12] and spectra consis-
tent with hydrated minerals whose unique compo-
sition suggest an (in part) endogenic origin [13-15].
Moreover, Ceres’ small-scale topography requires a
material stronger than ice [16].

Many two-layer structures can be matched to
the above observables by adjusting the bulk rock
density (which sets the bulk ice:rock ratio) and frac-
tion of rock in fines. Here, we choose a rock density
ρc = 2900 kg m−3, that of grains in CM chondrites
[1]. Assuming hydrostaticity, the wide range of re-
ported shapes [2,3,17] can be matched by interiors
with a rocky core size up to 360 km. We explore end
members with 75% of the rock in chondrules and
25% in fines, yielding a 360-km core and a mantle
comprising 74 vol% ice and 26 vol% fines; and with
1% of the rock in chondrules and 99% in fines (85-

km core with a mantle comprising 62 vol% fines).
Early hydration and differentiation: Our

1-D numerical simulations of thermal evolution [1]
suggest that following accretion, radionuclide de-
cay heating melts ice in the central layers. Melting
can occur quickly throughout the interior if Ceres
accretes abundant short-lived radionuclides such as
26Al (accretion within 4 Myr after Ca-Al-rich in-
clusions), or within tens of Myr and only at depth
otherwise. In the first case, we assume that chon-
drules and fines are quickly hydrated and emplaced
on the surface, overturned by impacts. In the sec-
ond case, we calculate analytically that in muddy
liquid of density ρl and viscosity η, chondrules of ra-
dius D fall distances ∆R by Stokes flow on decadal
timescales:

tsettle ≈ 50

(
ρc − ρl

800 kg m−3

)−1 ( η

0.18 Pa s

) ( ∆R

100 km

) (
D

1 mm

)−2

yr

(1)

This leads to a gravitationally unstable undiffer-
entiated mantle atop a chondrule-free ocean, which
overturns by Rayleigh-Taylor instabilities within 50
Myr at 170 K [18]. In either case, ice sublimates
from the surface, leaving a lag deposit of hydrated,
µm-sized fines within Ceres’ first few tens of Myr.
Crater counts to derive surface ages can test these
model predictions. Surface particle size may be de-
termined by fits to reflectance spectra.

Thermal evolution and present state: We
simulated Ceres’ thermal evolution until the present
day [1], using the same code as [19,20], modified to
implement the assumption that fines and ice are
well mixed by forcing differentiated layers to retain
a set percentage of their initial rock mass. Rocky
fines have lower thermal conductivity (≈ 1 W m−1

K−1) than ice (≈ 3 W m−1 K−1), making the man-
tle insulating [19]; they also increase its viscosity
by a factor (1-φ/0.63)−2 ≈ 3 or 4000 for volume
fractions φ = 0.26 and 0.62, respectively [21].

These simulations suggest that the present-day
core-mantle boundary in the large-core case is warm
enough (≈250 K) to allow liquid brine pockets. For
the small-core case, the muddy hydrosphere remains
liquid below 110 km depth. These results are robust
to various amounts of long-lived radionuclides (CO
to CI chondrite abundances).

Geochemistry: The above scenarios provide
ample opportunities for water-rock interaction. We
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investigated equilibrium fluid and rock compositions
using the geochemical modeling software PHREEQC
[22]. Initial rock minerals and abundances were
chosen to match representative elemental [23] and
mineralogical [24] compositions of CM chondrites
to within a few percent for each element and min-
eral group, including all elements more abundant
than 500 ppm, plus N and other elements. Two ini-
tial fluid compositions were simulated: pure water
and water with 5 mol% C, 2 mol% N, 0.5 mol% S,
and 520 mol ppm of Cl to approximate the volatile
(C, N, S) content of comets [25] and the chlorine
content of CI chondrites [23].

Water-rock interactions yield fluids rich in S (S5O2−
6 ),

C (methane), and N as NH3 or NH+
4 , with <25% of

the solutes being Na and Ca. Hot fluids can be rich
in H2. The main mineralogies are magnetite and
clays (saponite smectite; antigorite, cronstedtite,
and greenalite serpentines; chlorites; NH4-clays),
notably in qualitative agreement with those observed
by Dawn instruments [15]. Carbonates, which seem
prominent on Ceres [14,15], are absent from our
equilibrium mineral assemblages, but present in some
solutions from which they could precipitate upon
freezing or vaporization.

Ongoing cryovolcanism? Ceres’ surface dis-
plays several peculiar, geologically young features:
several bright spots, prominent in Occator crater,
and domes exemplified by Ahuna Mons [26]. The
bright spots have been interpreted as salt leftover
from sublimated water [1,26], and Ahuna Mons as
a volcanic construct [27].

Cryovolcanism is remarkably plausible in the
context of our evolution models. Extant subsur-
face liquid is expected as a refreezing ocean in the
small-core scenario, bearing solutes leached from its
interaction with rock; and as brine reservoirs in the
large-core scenario. As just 2% of a liquid reservoir
freezes, it compresses the liquid, overpressurizing it
by the ∼10 MPa needed for it to ascend ∼100 km
[28-30]. In the large-core case, the liquid density ρl
= 1526 kg m−3 and fines volume fraction φ = 0.26
yield a hydrosphere volume increase of 4.1% upon
freezing, equivalent to a global layer 77 m thick (20
m once the ice has sublimated away). In the small-
core case, with ρl = 1526 kg m−3 and φ = 0.62,
the volume increase is 1.4%. Our simulations sug-
gest that only the upper 110 km have refrozen so
far, corresponding to a global layer 18 m thick after
sublimation. Liquid is likely to effuse to the surface
through preexisting fractures, such as those in the
basements of craters [31]. Perhaps basement frac-
tures formed during the Occator impact intersect

the large NW-SE oriented fracture network in the
Ebisu and Palo mapping quadrants, favoring ongo-
ing effusion in this particular region of Ceres. Ev-
idence of slow effusion might be restricted to large
craters, without sufficient material erupted (<20 m
equivalent global layer) to significantly erase im-
pact morphologies at the scales observed by Dawn’s
Framing Camera.

Because sulfates freeze only a few degrees below
0◦C, leaving chlorides in the brine, chloride salts
may be concentrated relative to sulfates in areas of
cryovolcanic effusions. Fines of aqueously altered
minerals may be erupted along with the fluids.
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