HEAT TRANSPORT IN THE HADEAN MANTLE: FROM HEAT PIPES TO PLATES. Duminda G. J. Kankanamenge1,2 and William B. Moore1,2, 1Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, Virginia, USA (gjkduminda@gmail.com). 2National Institute of Aerospace, Hampton, Virginia, USA (bill.moore@nianet.org).

Introduction: Plate tectonics is a unique feature of Earth and it plays a major role in transporting Earths internally generated heat. It also governs the nature, shape and the motion of the surface of Earth. The mechanism and the timing of the origin of plate tectonics on Earth has been difficult to establish observationally, therefore it is still an interesting subject, which is still under debate. The internal heat energy of the terrestrial planets was greater in the early stages of their histories than it is today [1].

In order to understand the behavior of the Earth under much higher heating rates, we turn to a contemporary example. Jupiter’s moon Io is a rocky body experiencing very high heat production due to tidal dissipation resulting in a surface heat flow roughly 40 times Earth’s [2]. Io transports heat from the interior to the surface by melt segregation resulting in extreme volcanism [3, 4], a mode of heat transport called ‘heat pipes’. Recent studies [5] have proposed that, for roughly the first third of Earth’s history, heat flow was sufficiently high that Earth’s heat-loss and lithospheric dynamics were also dominated by the ‘heat pipe’ mode. When volcanism dominates the heat transport of a terrestrial body, hot magma moves through the lithosphere in narrow channels to erupt on the surface. Continuous burial of old, cooled flows results in a thick, cold, and strong lithosphere.

In this study, we numerically simulate the heat transport in the pre-plate tectonic Earth to understand the transition from heat pipe mode to plate tectonic behavior. These simplified numerical simulations of the flow of Earth’s mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We investigate the influence of melt transport on the thermal structure and stresses of the lithosphere vary with initial conditions and yield stress for a given set of solidus function parameters. This report discusses our numerical model, simulation results and discuss how the convective stresses exceed the yield stress of a lithospheric lid producing overturn.

Model: We use STAGYY [6] to solve the equation of mass, momentum, energy and composition conservation for infinite-Prandtl-number Boussinesq flow in a 4×1, two-dimensional domain spanning the depth of the mantle. The system is made dimensionless by using the mantle depth, D, as the length scale, $D^2/\kappa \kappa$ as the thermal diffusion time scale (κ, thermal diffusivity) and $D^2 H/k$ as the temperature scale (where H, k are the volumetric heat production rate and the thermal conductivity, receptively). The Newtonian, exponentially temperature-dependent viscosity (η) is used. We model the strength of the lithosphere by using a yield stress σ_y which modifies the constitutive equation as follows:

\[
\sigma_{ij} = \frac{\sigma_0^2 \eta}{\sigma_0^2 + \eta^2 \dot{\varepsilon}_{ij}}\dot{\varepsilon}_{ij} \equiv 2\eta_{\text{eff}} \dot{\varepsilon}_{ij}. \tag{1}
\]

Here σ_{ij} is stress, $\dot{\varepsilon}_{ij}$ is strain rate, η_{eff} is an effective viscosity and $\dot{\varepsilon}_{ij}^2$ is second invariant of the strain rate tensor, and the effect of finite σ_y is to lower the viscosity to maintain an upper limit on the stress.

To keep the dynamics of melting and melt extraction isolated, we take a highly simplified approach to mantle compositional evolution. Composition is assumed to vary between the two end-members basalt and harzburgite. The variable C, which varies from 0 (harzburgite) to 1 (basalt), represents the fraction of basalt at each location. Melting is calculated in each grid cell at each time step. Basaltic melt is generated whenever the mantle exceeds a simple linearly pressure-dependent solidus [7]. Only the basaltic component can melt; once the composition reaches harzburgite, further melting is not permitted. The fraction of partial melt f that brings the temperature back onto the solidus, if sufficient basalt fraction is present. Melt is immediately extracted to the surface, and the column in which the melt was produced is advected downwards to conserve mass.

Results: We first investigate the influence of melt transport on the thermal structure and stress state of the lithosphere. We assume that heat is only produced in-
When the conductive heat flux exceeds the internal heat production rate, the temperature difference is greater, and the buoyancy forces are not large enough to overcome lithosphere strength. For the buoyancy forces and the convective stresses are not large enough to overcome lithosphere strength. Eventually they may overcome the strength of the lithosphere and break the plate, initiating plate tectonic behavior if the scaled yield stress is sufficiently low.

Conclusions: Our results demonstrate that heat pipes remove buoyancy from the actively convecting boundary layer at the top of the mantle, reducing convective stresses and therefore suppressing plate tectonics. This explains why Io displays no evidence of plate tectonic behavior despite its very strong internal heating.

Acknowledgments: This work was sponsored by National Science Foundation grant EAR-1246983.