Introduction: A new systematic lunar geologic mapping effort has endeavored to build on the success of earlier mapping programs by fully integrating the many disparate new datasets using Geographic Information Systems (GIS) software and bringing to bear the most current understanding of lunar geologic history [1, 2]. This new mapping effort began with the division of the Moon into 30 quadrangles and preliminary mapping of the Copernicus Quadrangle [3, 4]. As part of this effort, we present a 1:2,500,000-scale map of the Planck Quadrangle (LQ-29; Figure 1). Using traditional and current (digital) photogeologic mapping techniques, we identified and mapped 19 geologic units and 14 linear feature types, which collectively document major episodes of unit emplacement and modification. Superposition, cross-cutting relations, and analysis of impact crater size-frequency distributions yielded relative and modeled absolute ages of map units, as well as chronostratigraphic ages for all impact craters > 2 km in diameter.

Physiographic setting: Planck Quadrangle extends from -30° to -60° latitude and 120° to 180° longitude; to the south, it borders the South Pole Quadrangle (LQ-30) [5]. The area included in Planck Quadrangle was mapped previously at 1:5,000,000 scale by [6-8]. The western portion of the pre-Nectarian South Pole-Aitken (SPA) impact feature covers much of the quadrangle’s area. SPA has multiple, overlapping impact structures superposed on its floor, from sizes below resolution to over 600 km across, with ages ranging from pre-Nectarian to Copernican. Several of these structures contain effusive volcanic mare deposits.

Data and Mapping Methods: The ~100 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) global mosaic formed the basemap for our mapping. This dataset provides a 3x improvement in resolution over Lunar Orbiter images along with global nadir coverage. Additionally, we used LRO Lunar Orbiter Laser Altimeter (LOLA) [9, 10] and LRO WAC DTM [11] to characterize the topographic expression of the surface and understand processes in vertical cross-section. The gridded LOLA and WAC DTM provide complete coverage of the lunar surface at a resolution of ~100 m/pixel, and represent the most refined spatial and vertical (~1 m/pixel) resolutions acquired for the Moon.

Morphological features were mapped using the basemap, while Clementine multispectral data were utilized to extract compositional information. Coverage includes ultraviolet/visible (5 bands between 415-1000 nm) and near-infrared (6 bands between 1100-2780 nm) data. We examined the 750/950 nm, 750/415 nm, and 415/750 nm band ratios. The 750/950 nm ratio indicates FeO content; the deeper the absorption feature, the greater the FeO content. The other band ratios measure the “continuum slope;” the younger the soil, the flatter the slope. LOLA data yields topographic information at 100 m/pixel. LRO Narrow Angle Camera (NAC) images provide non-global, high resolution (0.5 m/pixel at 50 km altitude) panchromatic images of the lunar surface. NAC images were used when identification of small features and textures on scales of tens of meters was required to confirm unit characteristics and to refine contact locations.

Geologic units: Morphology and topography together provided sufficient information to define most units and determine most unit boundaries. Units grouped by geographic setting include terra, plains, and basins, with some containing multiple units subdivided by age and primary morphologic character. Terra units include ancient highlands (pNth), rugged terra representing the SPA floor (pNtr), and knobby terra around Ingenii basin (pNtk). Smooth plains (pNps) are iron-enriched plains materials with a morphology that might be indicative of impact melt. Basin units (Nbr, pNbf, pNbr1, pNbr2) include those associated with the impact structures Poincaré, Planck, Ingenii, Leibnitz and Von Kármán.

Lithologic units include volcanic and impact categories. Volcanic products are primarily discrete, non-contiguous mare deposits occurring exclusively within, or breaching the rims of, craters or basins (smooth mare material; Im). The composition is primarily basaltic, similar to the nearside maria, but low in Fe and Ti. Other volcanic features include domes, wrinkle ridges, sinuous rilles and dark, Fe-rich plains (pNpd). Patches of smooth material enriched in FeO but buried or mixed into the regolith through impact activity (cryptomare [12]) are mapped as mantled mare (Nmm, Imm). Other important basin or impact materials include the high-albedo, surficial swirl-like markings of the Reiner Gamma class in Mare Ingenii (s).

Geologic History: The geologic record in the pre-Nectarian period was dominated here by large impacts, including those that formed the Poincaré (~4.07 Ga), Planck (~4.06 Ga), Jules Verne (~4.01 Ga) and Von Kármán (~3.97 Ga) basins. The oldest terra units are the rugged and highlands terra (~4.06 Ga). The smooth plains unit (pNps) and iron-rich dark plains unit (pNpd) are also dated as pre-Nectarian, essentially
contemporaneous with each other at ~4.00 and ~3.98 Ga respectively.

Key events that occurred during the Nectarian include the formation of the Ingenii (~3.91 Ga) and Leibnitz (~3.88 Ga) basins, and the emplacement of mare within a crater at 51°N, 128°E inside Planck. Crater statistics for all these areas are within, or nearly within, each other’s error bars, suggesting that these events happened within at most a few tens of millions of years of each other. Ingenii ejecta would likely have covered most of the quadrangle, mantling any older mare deposits, if they existed [13].

Most volcanic deposits are late Imbrian. The larger ponds all cluster within ~3.74-3.71, except for one pond in Pauli crater (~3.61 Ga), and one NE of Poincaré (~3.61 Ga). One possible interpretation based on the < 20 My of chronological separation of most mare ponds, is to consider all mare deposits as contemporaneous. However, the ponds in and around Poincaré were previously dated lower Imbrian by [8], and the two largest ponds in this area both pre-date all mare deposits except for the oldest, likely less affected by Ingenii ejecta. These observations are consistent with an older age for the two deposits.

The knobby terra unit (pNtk) is dated at the beginning of the early Imbrian (~3.83 Ga), consistent with the interpretation that it is associated with terrain disruption at the antipode of the Imbrium basin. The surficial swirls (s) are also dated as early Imbrian (~3.78 +/- 0.02 Ga). This age is not consistent with an origin by young cometary impact or meteoroid scour. Rather, it is more likely associated with processes involved with shielding or sorting of particles by a magnetic field associated with the Imbrium antipode [14].


Figure 1. Geologic map of the Planck Quadrangle (LQ-29) of the Moon.