METAMORPHISM ON MARS: A VIEW FROM ESKOLAITE-BEARING CHROMITE-MAGNETITES IN NORTHWEST AFRICA (NWA) 7533.

Yang Liu1, Chi Ma2, John Beckett2, David Flannery1, Abigail Allwood1.

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. (Email: yang.liu@jpl.nasa.gov).

Introduction: Eskolaite (Cr₂O₃) is a rare mineral on Earth, first discovered in metal-sulfide deposits and skarns in the Outokumpu mine in Finland [1], and then reported in other ore deposits or with grey-wacke/alluvium (see [2-3]). Eskolaite has also been found in high-pressure rocks [4-6].

In extraterrestrial materials, eskolaites, most of which are sub-μm to μm sized grains, are known from the lunar regolith, ureilites, carbonaceous chondrites, and in the fusion crusts of iron meteorites [7-14]. The only reported occurrence in a Martian meteorite is as ~10 nm grains, coating silica glass in ALHA 84001, which was attributed to condensation following vaporization of chromite in an impact [15].

In our study of the ‘Black Beauty’ meteorite NWA 7533 using a breadboard model of PIXL, the X-ray fluorescence spectrometer selected for Mars 2020 rover, we detected high-Cr phases. Most of these are chromites, but one grain contains eskolaite. Further investigation of another NWA 7533 section and one NWA 7034 using EPMA X-ray mapping and SEM yielded one more eskolaite crystal enclosed in chromite in NWA 7533. Here we report the texture and mineral association of the eskolaite-bearing grains, preliminary compositions from SEM-EDS analysis, and consider possible formation mechanisms on Mars.

Results: The eskolaite (Esk) grain encased in chromite (Chr)-magnetite (Mag) was observed in each of the two sections of NWA 7533 (Figs. 1 and 2). EBSD analysis confirmed the corundum structure of both grains. The eskolaite grains are single crystals ~30-90 μm long and ~10-20 μm in the smallest dimension. Both grains are embayed by the mantling chromite, which is further rimmed by aggregates of magnetite, augite (Aug), pigeonite (Pgt), and plagioclase (Pl) with a minor amount of chlorapatite (Cl-Ap) and ilmenite. One of the occurrences also contains merrillite (Mer)-chlorapatite (Fig. 1), which contacts with eskolaite are separated by a thin selvage of chromite.

The eskolaite grains are relatively uniform in composition, except for Fe₂O₃ (e.g., 0.9-1.4 wt% in the grain in Fig. 1). V₂O₃ concentrations are ~0.35 wt% (Fig. 1) and 1.29 wt% (Fig. 2), respectively. Both grains contain 96-98 wt% Cr₂O₃, <0.5 % Na₂O, <0.5 % SiO₂, <0.1 % MgO, and <0.1 % Al₂O₃. These compositions correspond to a formula of Esk₉₈Hem₁Kar₁ (Fig. 1) and Esk₉₇Hem₁Kar₂ (Fig. 2), where Hem refers to the hematite (Fe₂O₃) component and Kar to the karelianite (V₂O₃) component. Terrestrial examples are higher in one or more cations of Al, V, Ti and Fe [1, 3-5]. The mantling chromite-magnetite is polycrystalline based on preliminary EBSD and shows compositional zonation from nearly pure chromite in contact with eskolaite to Cr-magnetite (Fig. 4). The magnetite mixed with silicates in the rim varies from Cr-bearing magnetite to nearly pure magnetite (Fig. 4). Mg# of the chromite-magnetite varies from 4-16.
Eskolaite in most natural samples is secondary in nature. Eskolaite in ureilites is formed by high-T reduction of primary chromite through shock metamorphism [14], but we see no evidence for reduction agents (e.g., metals/carbides/graphite) in NWA 7533 that might facilitate such reactions. Moreover, eskolaite in NEW 7533 is texturally earlier than the enclosing chromite-magnetite, not a product of it. However, the formation of terrestrial eskolaite often involves fluids in metamorphic rocks (e.g., [3, 16-18]), or in metasomatized mantle rocks [4, 5].

The anhedral shape of eskolaite and the zoned mantle of increasing Fe\(^{3+}\) contents toward the rim suggest that eskolaite reacted with or was replaced by an oxidizing fluid. In low temperature aqueous fluids, Cr\(^{3+}\) is generally thought to be essentially insoluble except in contact with Mn oxides [e.g., 19]. At elevated temperatures in alkali-, Cl-enriched fluids, however, Cr\(^{3+}\) becomes soluble [20-21] and, therefore, mobile. As the temperature or fluid composition is changed, either eskolaite or chromite may become the stable Cr-bearing oxide.

Summary: The unusual associate of eskolaite and chromite-magnetite in NWA 7533 suggests an active hydrothermal environment in the martian crust. In our previous studies of NWA 7034/7533, we suggested that REE-phosphates and REE-silicate reflect hydrothermal events in the martian crust [23-24]. Reaction of eskolaite to chromite-magnetite provides additional constraints on the nature of hydrothermal processing of the Martian crust.

References: