CONSTRANTS ON H₂O AND H₂ PROPORTIONS IN THE VOLATILE ENVELOPES OF YOUNG, H₂-PRODUCING, SMALL-RADIUS EXOPLANETS

M. Melwani Daswani* and E. S. Kite
Department of the Geophysical Sciences, University of Chicago
*melwani@uchicago.edu

Small-radius exoplanets with low densities discovered by Kepler could have either accreted volatile envelopes from the nebular disk, or produced them via water-rock interaction.

Volatiles in Kepler extrasolar planets

Kepler and the K2 have discovered nearly 2000 confirmed extrasolar planets (March 2016) through Transit-Timing Variations and Radial Velocities [1]. ~ 300 of these exoplanets are 1.6 < R₂Earth < 2.5 [1]. From calculations of their mass and density we assume that they are rocky Earth-like core compositions under low molecular weight envelopes dominated by H₂ [e.g., 2]. Possibly, the planets do not accrete H₂ from the nebula, but produce it through reactions such as:

\[\text{Fe}^0 + \text{H}_2 \rightarrow \text{FeO} + \text{H}_2 \] [e.g. 3]

and:

\[6\text{Fe}_2\text{SiO}_4 (\text{fayalite}) + 11\text{H}_2\text{O} \rightarrow 3\text{Fe}_2\text{Si}_2\text{O}_5(\text{OH})_4 (\text{serpentinite}) + 2\text{Fe}_2\text{O}_4 (\text{magnetite}) + 5\text{H}_2 \] [e.g. 4]

Before testing the potential to generate a H₂O + H₂ inventory from water-rock reactions, the equilibrium H₂O/H₂ needs to be constrained for plausible F/O₂ conditions during planetary formation, since the upper weight limit of the envelope is ~ 1.7 wt. % for terrestrial-like rocky core compositions, if all Fe⁰ is oxidized to Fe³⁺ [5, 6, 7]:

~ 32 wt% Fe⁰ × (3 e⁻ / 2 e⁻) × (2 amu / 56 amu) ≈ 1.7 wt%

(For cores with Fe contents similar to Solar System rocky planets.)

H₂O/H₂ proportions in envelopes

H₂O/H₂ was calculated using the van Laar gas mixing model [11] and the compensated-Redlich-Kwong (“CORK”) equation of state and CHO software by T. Holland [12]. The effects on H₂O/H₂ are shown with varying temperature and O/F₂ (relative to IW) for 1 kbar (Fig. 2a) and 10 kbar (Fig. 2b).

We assume planet radius scales with mass [e.g. 13]

\[r_{\text{Earth}} \propto m_{\text{Earth}}^{0.77} \]

Volatil outgassing from the core increases the pressure at the core-envelope interface (Pₑ), as seen in Fig. 3 for planets of different masses (units Earth mass, Mₑ). For 1Mₑ, Pₑ = 1.9 × 10⁸ bar at the 1.7 wt. % outgassing limit.

Hypothesis test:

- Low H₂O/H₂ = low molecular weight — envelope could be achieved by outgassing.
- High H₂O/H₂ = high molecular weight envelope – a “water-world” different from the two-layer (core + envelope) models of e.g., [8, 9]. This envelope cannot be achieved by outgassing.

Conclusions + further work

- We now have H₂O/H₂ constraints for the envelope at a variety of conditions.
- Increased volatile outgassing increases pressure at the core-envelope interface.
- Calculations will be expanded to ~ 6000 K and we will calculate the H₂O + H₂ in the coexisting magma.
- Model results will be compared to volatile abundance constraints of Kepler and K2 planets.

References

Acknowledgements

This work was supported by the NASA Exoplanets Research Program. Many thanks to M. Hirschmann, E. Ford and J. Barnes for discussion.