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S0, you think you understand crater equilibrium?

Portion of LRO NM146959973LAC image used in

Robbins et al. (2014)

Obervations of heavily cratered terrains define an "empirical equilibrium" level as a cumulative power
law with a slope of -1.83 (Hartmann 1984)

Crater counts in equilibrium

Very heavily cratered terrains appear to
reach an equilibrium in the total cumulative
number of countable craters per unit area.
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From the Fassett counts in Robbins
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Shaded digital elevation model generated by the
CTEM, the Cratered Terrain Evolution Model

But what is the
process that
determines the
observed crater count

A equilibrium level?
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History of equilibrium cratering modeling

Experimental and Observational

Gault (1970) showed that
natural and experimental
cratered surfaces (see left
figure) reach a maximum
crater density of about 5-10%
of "geometrical saturation."
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AT N\ This illustration from Ross
—= g #~=—  (1968) shows how small
craters erode larger craters.

To model this in CTEM we need to know what is the
erosive "power" of each crater.

We accomplished this with a series of numerical
experiments in which we generated a 100 m test crater
and bombarded it with a size-distribution containing a
single size of crater, from 1 - 10 m.
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Shown above are the results of two of our simulations.
Over time, the single-size craters erode the larger
crater, softening its profile.
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Profiles of the 100 m test
crater can be fit the profile
of the same crater being
eroded due to diffusion,
using a classical diffusion
model. Each crater size
gives a different diffusion

constant.

Numerical

Monte Carlo terrain evolution codes like
CTEM are the primary way that cratered
surfaces are modeled numerically. Monte
Carlo codes can be broadly categorized as
either circle-based or topography-based.
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Using a Poisson model to estimate
the number of overlapping craters
over the test area over time, we
solved for the intrinsic per-crater
diffusive power. This tells us how
much each crater contributes to the
diffusivity of the system.
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To get what we need, which is a
model of the intrinsic per-crater
diffusive power, Kc, we must turn
to Poisson statistics. This allows us
estimate the amount of times a
point on the surface is overlapped
(n) by a crater of diameter D and
diffusive power K., given an
apparent surface-wide diffusion ki.
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Here we use the Cratered Terrain Evolution Model

(Richardson 2009, Minton, Richardson, and Fassett 2015)

Circle-based codes (above from Woronow 1978),
model craters as circles. Circles represent crater
rims. Crater erasure is parameterized by a factor
that determines whether a crater of a given size can
erase the rim of another crater. See also Chapman
& McKinnon (1986); Marchi et al. (2012).

With an estimate of the intrinsic per-
crater diffusive power, we can tackle
one of the big issues with CTEM:

How to model unresolvable craters.
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We adopt the Neukum Production
Function (NPF) as our cratering
model. To estimate the effects of
unresolvable craters, we extrapolate
the cumulative slope of the NPF at
~10 m down to micron sized dust.
Based on LDEF experiment dust
measurements, this likely over-
predicts the primary production
population.

to investigate crater count equilibrium.
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Crater counts generated by CTEM, in

which we

successfully reproduce equilibrium cratering.
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We found that the observed equilibrium level is a consequence of crater degradation due to downslope

diffusion. But classical diffusion is inadequate to capture the process. Downslope movement is instead
an anomalous diffusion process, similar to lateral transport as shown by Li & Mustard (2000).

Real craters on heavily cratered terrains are erased by
diffusive erosion (i.e. Fassett and Thomson 2014), not by
having their rims overprinted. Topography codes like
CTEM (see also Gaskell & Hartmann 1997), which
represent the cratered terrain as a three-dimensional
digital elevation model, can capture this mechanism in a
more natural way than circle-based codes.

Unlike the raindrops that erode
desert landscapes on Earth,
impacts do not have an upper
bound on size. Therefore the
random walk in topography
associated with impact erosion is
best modeled as anomalous
diffusion, rather than classical
diffusion.

In anomalous diffusion, the mean
square displacement of the
system has a power-law size
dependence. In the case of
cratering, the more time passes,
the more likely a given piece of
surface will be hit by a bigger
impactor.

Classical Diffusion Anomalous Diffusion

Unresolvable craters in (smaller than the size )7 O Oz . 0Z
of a grid cell) are modeled using anomalous = — | K4 K;—
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At each time step, a diffusion parameter Kd is drawn from a Poisson distribution that
couples our per-crater diffusion model to the production function. This is done for each grid
cell, and so we use a finite difference scheme that allows for spatially varying diffusivity.

When we implemented our
anomalous diffusion model for
sub-pixel craters, we got an
unexpected result: The slopes of
craters started to develop a texture
reminscent of the "elephant hide
texture" that is often associated
with lunar slopes. On the left is a
portion of a 1 m/px simulation from
CTEM, and on the right is an
LROC image of the Apollo 14
landing site, showing a similar
texture.

After some trial and error,
we found that adding extra
intrinsic diffusivity (slightly
more than doubling it) to
both resolvable and
unresolvable craters
allowed us to reach a good
fit to empirical equilibrium.
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Numerical experiments
fit
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The reason for this extra
4 diffusion is unknown. We
| hypothesize that it may
be related to acoustic
fluidization, or some
other dynamic process

D (m)

that enhances collapse
1
° for craters on slopes.
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Even with our well-calibrated
(and likely over-estimated)
anomalous diffusion model for
small, unresolvable craters in
place, we still generated
higher than equilibrium-level
numbers of craters!

We already have a
calibrated ejecta blanket
burial model in CTEM
(Minton, Richardson, and
Fassett 2015). CTEM can
model how old craters are
erased beyond the rims of
new craters in a self-
consistent way.
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