The Role of Vertical Mixing Process Across Mare and Highland Contacts

Ya-Huei Huang,
Toshi Hirabayashi,
David Minton,
Jacob Elliott,
Andy Freed

Caleb Fassett

Exposed part suffers micrometeoroid impacts, while buried part (upper of yellow dashed line) is free of micro-craters.

Mare and highland contacts are perfect places to study impact transport on the Moon. Different data sets appear contradictory. Spacecraft data and hand-picked samples directly from mare and highland contacts show that the non-mare component drops rapidly within the distance of 4-5 km from contacts, while many mare soil samples have an average non-mare abundance regardless of distance from contacts [1,2].

Simulation Method

CTEM, Crater Terrain Evolution Model, is a Monte Carlo code simulating the evolution of planetary surface subject to an impact flux [3,4]. Yes, CTEM can model cratering very well (Figure 6, see Minton’s Thursday poster #97), but it has a resolution limit.

Those sub-pixel craters associate with that they handle surface deposits that are delivered by either local vertical transport by resolvable craters or lateral transport. Figure 7 shows how small impacts may bring up buried material that might be exotic to local material.

A mathematical model for the sub-pixel vertical mixing process!

History of vertical mixing: Gault [1974] defined a turnover timescale for a flat, square surface [5]. As a crater forms on a surface, the region occupied by this crater can turnover and, as result, is mixed. For the whole surface to be mixed, one needs to calculate the total number of craters 100% cover the surface. He assumed the same sized crater. The fraction of a surface as function of number of craters takes the form of exponential of total area of number of craters. Instead of same sized craters, Hirabayashi et al. [in prep] [6] asked how long multiple sized craters fill up the surface.

As each cratering event with a different size occurs independently, the probability of multiple sized craters takes a similar form as single sized craters.

Reference:

Acknowledgement: Thanks to NASA Earth and Space Science Fellowship for supporting this research project.

Our simulation suggests that vertical mixing is as important as lateral transport on the Moon.

Li and Mustard [2000] neglected vertical transport and allowed an ejecta to go infinitely, leading a good match with Clementine data. As a result, they suggested that the vertical mixing process is insignificant. Yet, in our simulation, without vertical mixing, we cannot match with observation data (Figure 9).

Figure 9: The average mare abundance with varying distance from the mare and highland contact. Grimaldi crater is chosen for Clementine data and our final result. The black line is taken from Clementine UV/Vis reflectance data [1], and the lines with blue and red colors are from our study. The blue line is the simulation with only resolvable craters’ ejecta and no sub-pixel vertical mixing model, and the red line is the result including both.

Can we explain an elevated non-mare abundance at large distance? Our hypothesis is that this may be a result of heterogeneity caused by rays.

The Mystery of Impact Mixing on the Moon: Why do two different data sets appear to contradict each other?

Vertical mixing was believed to be an insignificant process. Crater excavation is vertical mixing or vertical transport. They move debris out of a cavity vertically. The debris is mixed and deposits around a crater’s rim highlight in yellow color (Figure 3).

Can we neglect vertical mixing process across mare and highland contacts? Especially, any exposed rock or debris at the lunar surface is subject to micrometeoroid impacts (Figure 4).

Can we explain an elevated non-mare abundance at large distance? Our hypothesis is that this may be a result of heterogeneity caused by rays.

Vertical transport dominated process like crater rays?

Mare and highland contacts are perfect places to study impact transport on the Moon. Different data sets appear contradictory. Spacecraft data and hand-picked samples directly from mare and highland contacts show that the non-mare component drops rapidly within the distance of 4-5 km from contacts, while many mare soil samples have an average non-mare abundance regardless of distance from contacts [1,2].

Lateral transport dominated process like crater rays?

Lateral mixing process must dominate at the lunar surface to explain the sharp drop of non-mare abundance within 4-5 km.

Figure 2: An example of Jackson crater in ~35 km of radius with bright rays around from LROC WAC camera. The white center along bright rays are mapped by Elliott et al. in prep (See Elliott’s Tuesday poster #45). The crater rays are an evidence of dominant lateral transport process on the Moon.

Figure 4: Apollo 12054 rock. Exposed part suffers micrometeoroid impacts, while buried part (upper of yellow dashed line) is free of micro-craters.

Figure 3: Apollo 12054 rock. Exposed part suffers micrometeoroid impacts, while buried part (upper of yellow dashed line) is free of micro-craters.

Figure 10: The output of composition map from a simulation including lateral and vertical transport. Left side (gray) is mare, and right side (gray) is highland. The size of simulated mare is about the size of Mare Grimaldi. The strip marked as yellow dashed line is 5 km wide and 175 km long. The location is at ~20 km, about Apollo 12 landing site.

Figure 11: The distribution of highland abundance inside the yellow box in Figure 10, which is similar to the distance at Apollo 12 landing site. The high concentration of highland abundance is responsible for ray deposit. The two black horizontal lines are the range of non-mare abundance at Apollo 12 landing site. It is also evident that Apollo 12 landing site is superposed by rays coming from Copernicus crater.

Figure 5: The output of surface picture at the end of result from CTEM (Cratered Terrain Evolution Model). Figure 6: CTEM has a resolution limit and cannot produce craters smaller than one pixel (sad face), but craters larger than one pixel (happy face).