Motivation
Polycyclic Aromatic Hydrocarbons (PAHs) are considered to be important in theories of abiogenesis (Allamandola, 2011) and are thought to be responsible for characteristic short wave infrared (SWIR) spectral features at 3.29 µm in interstellar dust clouds (Mulas et al., 2005) and on the Saturnian satellites Iapetus and Phoebe (Cruikshank et al. 2007). They have been detected in Martian meteorites, though their origin is controversial and may be the result of terrestrial contamination (Becker et al., 1996). PAHs exposed at the Martian surface are rapidly destroyed by UV radiation (Dartnell et al., 2012), and therefore it is desirable to identify processes that provide a source of newly exposed material for SWIR analysis.

Background
Swiss Cheese Terrain (SCT) is characterised by sublimation features unique to the Martian South Pole; their morphology is subject to seasonal changes as CO2 sublates during Martian Southern Hemisphere spring and summer. The permanent CO2 layer at the south pole allows SCT to build up over decades, resulting in dynamic features with a springtime scarp retreat rate of up to 8m/Mars year (Byrne and Ingersoll, 2002). Sublimation may occur from the base of the CO2 ice sheet, resulting in the excavation of dust trapped within the ice; local ruptures at the surface of the ice allow CO2 gas jets to erupt, leaving a surface layer of newly exposed dust, thought to be responsible for the dark rims visible in Swiss Cheese sublimation features (Kieffer et al., 2006).

Current and Future Work
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board NASA’s Mars Reconnaissance Orbiter (MRO) provides hyperspectral imaging data at visible and infrared wavelengths: 362-3920nm. Starting with 50 HiRISE images identified as SCT, additional images from NASA’s MOC-NA and CTX instruments were systematically analysed for widespread SCT coverage. Within this region, 72 Full Resolution Targeted (FRT) CRISM scenes were identified as containing SCT; these were arranged into groups of stacked images, resulting in 13 stacks each containing several FRT scenes taken over a period of 3 Martian years. Each group of images is being examined for geomorphological and spectral changes over time, with particular emphasis on the 3.29µm spectral region in order to search for evidence of PAHs.

Preliminary Results
Initial spectral analysis has revealed albedo-independent differences in spectral signatures between depression floors and dark rims in several CRISM scenes. Spectral mapping using CRISM Analysis Tool summary products reveals carbonate/organic diagnostic spectral features, predominantly in young, non-eroded SCT. The 2.5-4µm features of interest are being analysed using PeakFit software for comparison with existing literature to assign known minerals and compounds to individual peaks, and unidentified features are being cross-referenced with organic spectral libraries to look for similarities with PAHs.

References

Acknowledgements: The research leading to these results has received partial funding from the STFC “MSSL Consolidated Grant” ST/K000977/1 and partial support from the European Union’s Seventh Framework Programme (FP7/2007-2013) under Mars grant agreement no 607379.