Traversing the basin wall

The traverse route (in gold) from the peak ring to the southern basin wall. This is shown on a Wide Angle Camera mosaic of the Schrödinger basin overlain with a geological map from [4]. A total of 10 kg of samples will be collected for return to Earth from each of the three areas between landing sites (the first route being a loop back to landing site 1), totaling 30 kg overall.

References

1. O’Rourke et al., 2011
2. Burke et al., 2011
3. Burns et al., 2013
4. Kring et al., 2003
5. Britton et al., 2015
6. Kring et al., in press
7. Chuluun and Clavin, 1998
8. Wood et al., 2010
9. Taylor, 1975
10. Marronnet and Oberg, 1978
12. Potts et al., 2014

We would like to thank the Lunar and Planetary Institute, Dr. Georgiana Hurwitz, Dr. Jennifer Stein, Sherrill Burrows, Debra Finnegan, Adelle Denson, Elyse Gile, NASA GSFC Apollo and Antarctic Meteorite Coordination Facility, Brian Fossey and the LPI technical support team, and the UP Libraries for the support received throughout this project.

HERACLES Mission Concept

This traverse study has been planned alongside the ESA-led HERACLES 3-year mission concept. Three landing sites have been chosen for a reusable lander/ascent vehicle to transport material collected by the rover from the lunar surface to an evolving Deep Space Habitat. The habitat will be orbiting the Earth-Moon L2 Lagrange point, where NASA’s Orion crew vehicle will dock, collect the samples, and return them to Earth. The first landing site will deploy the rover, and the ascent vehicle will await the return of the rover and transfer of samples prior to launch.

Integrating the HERACLES mission concept with a traverse to Schrödinger’s basin wall will allow for at least 21 of the top priority science goals identified by the lunar science community [13] to be targeted (orange), including at least 6 of the most important goals (underlined). (Cross-hatch orange denotes goals that may be targeted along this traverse route).