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Fig. 1. Seamless hyperspectral and high spatial mosaic of IIM using the method described in [1] with 151.6 px/d.
Introduction and Purpose

. We finished the seamless hyperspectral and high spatial resolution mosaic (Fig. 1) for IIM reflectance data at standard geometry

(30, 0°, 30 °) which were processed using the pipeline described in [1].

. Users are welcome to contact us for these products including both mosaic and individual orbital.

. The mosaic is 26 bands (522-918 nm) because the first 5 bands and the last band were removed due to the low SNR. The size is
122 Gb for the mosaic and 120 Gb for all the individual orbits.

. This seamless product can have several uses such as minerals, elements and geology, comparison of lunar irradiance model and ab-

solute reflectance, calibration for Earth observation sensors and separation of basaltic units, etc.
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fects of the photometry and non-uniformity of detector response along the

cross-track. The orbits used for deriving the correction factor are systemati-
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cally distributed with respect to zero beta angle, the photometric effects can
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be counteracted by stacking all the lines (Fig. 5).
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. Previously, the bad pixels were detected commonly with only a single band.
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We used multiple bands to detect bad pixels with spectral angle mapping .

mediate neighbors.




