HEOMD Overview
March 16, 2015

Ben Bussey
Chief Exploration Scientist
HEOMD, NASA HQ
Evolvable Mars Campaign Goal:

Define the pioneering strategy and operational capabilities required to extend and sustain human presence in the solar system including a journey towards the Mars system in the mid-2030s.
Strategic Principles for Sustainable Exploration

- Implementable in the near-term with the buying power of current budgets and in the longer term with budgets commensurate with economic growth;

- Exploration enables science and science enables exploration, leveraging robotic expertise for human exploration of the solar system,

- Application of high Technology Readiness Level (TRL) technologies for near term missions, while focusing sustained investments on technologies and capabilities to address challenges of future missions;

- Near-term mission opportunities with a defined cadence of compelling and integrated human and robotic missions providing for an incremental buildup of capabilities for more complex missions over time;

- Opportunities for U.S. commercial business to further enhance the experience and business base;

- Multi-use, evolvable space infrastructure, minimizing unique major developments, with each mission leaving something behind to support subsequent missions; and

- Substantial international and commercial participation, leveraging current International Space Station and other partnerships.
Mars Vicinity Options Provide the “Pull”

Mars Orbit
- Opportunities for integrated human-robotic missions:
 - Real time tele-operation on Martian surface
 - Mars sample return
 - Other science objectives
 - Technology demonstrations
- Demonstrate sustainable human exploration split-mission Mars concept
- Validate transportation and long-duration human systems
- Validate human stay capability in zero/micro-g

Mars Moons
- Opportunities for integrated human-robotic missions:
 - Real time tele-operation on Martian surface
 - Mars & moons sample return
 - Other science objectives
 - Technology demonstrations
- Demonstrate sustainable human exploration split-mission Mars concept
- Moons provides additional radiation protection
- In-situ resource utilization
- Validate human stay capability in low-g

Mars Surface
- Opportunities for integrated human-robotic missions:
 - Search for signs of life
 - Comparative planetology
 - Understanding Mars climate changes
 - Geology/geophysics
- Demonstrate sustainable human exploration split-mission Mars concept
- Moons provides additional radiation protection
- Entry, descent, landing
- EVA surface suits
- In-situ resource utilization
- Validate human stay capability in low-g
Global Exploration Roadmap (GER) outlines multi-agency roadmap for human exploration

- Includes consensus principles, notional mission scenarios, preparatory activities

All agencies agree on value of cislunar as next step for human exploration
Cis-Lunar Space: How the Earth and the Moon Interact

The contours on the plot depict energy states in the Earth-Moon System and the relative difficulty of moving from one place to another.

A spacecraft at L2 is actually orbiting Earth at a distance just past the Moon, however if you look at it from the Moon, the orbit will look like an ellipse around a point in space giving them the name “halo orbits”.

The interaction of the Earth and Moon creates bends in the energy contours that can be used to lower the energy needed to move around the Earth-Moon system and beyond, such as this example of a low energy transfer between L1 and L2.

The Lunar Distant Retrograde Orbit leverages these equilibrium and low energy contours to enable a stable orbit with respect to the Earth and Moon, that is accessible with about the same energy as L1 or L2.
Split Mission Concept

Getting to Mars

Using SEP for pre-emplacement of cargo and destination systems enables sustainable Mars campaign

- Minimizes the cargo needed to be transported with the crew on future launches
- Enables a more sustainable launch cadence
- Pre-positions assets for crew missions allows for system checkout in the Mars vicinity prior to committing to crew portion of mission
DRO as an aggregation point for Mars habitation systems
- Provides a stable environment and ease of access for testing Proving Ground capabilities
- Allows for Mars transit vehicle build-up and checkout in the deep-space environment prior to crew departure
- Able to transfer Mars Transit Vehicle from DRO to High Earth Orbit with small amount of propellant to rendezvous with crew in Orion – HEO is more efficient location to leave Earth-moon system for Mars vicinity
Returning from Mars, the crew will return to Earth in Orion and the Mars Transit Habitat will return to the staging point in cis-lunar space for refurbishment for future missions.
VALIDATE

- Advanced Solar Electric Propulsion (SEP) systems to move large masses in interplanetary space
- LDRO as a staging point for large cargo masses en route to Mars
- SLS and Orion in deep space
- Long duration, deep space habitation systems
- Crew health and performance in a deep space environment
- In-Situ Resource Utilization
- Operations with reduced logistics capability
- Structures and mechanisms

CONDUCT

- EVAs in deep space with sample handling in micro-g
- Integrated human and robotic mission operations
- Capability Pathfinder and SKG missions
Mission concepts with 5m fairing

- Inter-Planetary Mission
total mission volume = ~ 300m3

Mission concepts with Universal Stage Adaptor (includes additional payload capability)

- Orion with short-duration hab module
total mission volume = ~ 400m3
- Orion with ARV
 total mission volume = ~ 400m3
- 5m fairing w/Robotic Lunar Lander & short-duration hab
total mission volume = ~ 600m3
- 8m fairing with Telescope
 total mission volume = ~ 1200m3
- 10m fairing w/notional Mars payload
 total mission volume = ~ 1800m3

Mission concepts with 8m and 10m fairings
Mars 2020 Selected Payload Suite

Mars 2020 Rover

- Mastcam-Z Calibration Target
- SuperCam Calibration Target
- MEDA Electronics & Pressure Sensor
- RIMFAX Electronics
- RIMFAX Antenna
- SuperCam Body Unit
- MOXIE
- SuperCam Mast Unit
- PIXL Electronics Unit 1
- PIXL Sensor
- SHERLOC Sensor
- SHERLOC Cal Target
- PIXL Cal Target
- MEDA Mast
 - 3x Wind Sensors
 - 1 x RH Sensor
 - 3 x Temp. Sensors
MEDLI2 will provide critical environmental and system performance data for entry vehicles during the entry and descent phases of Mars entry, descent, and landing (EDL).

New for Mars 2020, MEDLI2 includes pressure transducers and thermal plugs on both the heatshield and backshell.
Resource Prospector

Get there…

- Launch
- Lunar Transfer
- Lunar Orbit
- Descent & Landing
- Quick Checkout
- Roll-off Lander
- Quick Checkout
- Begin Surface Ops

Find & Excavate Volatiles…

- Map surface
- Enter permanent shadows
- Expose regolith

Use the Neutron Spec & Near-IR Spec to look for Hydrogen-rich materials
Go to the areas with highest concentrations of volatiles, Permanently Shadowed Regions (PSRs)
Use the Drill Subsystem to bring material from up to 1 [m] depth to examine with Near-IR Spec

Collect and Process the volatiles…

- Capture regolith
- Heat regolith
- Identify Volatiles
- Show me the water!

Use the Drill to capture samples from up to 1 [m] depth
Heat samples (150-450 degC) in the OVEN Subsystem
Determine type and quantity of volatiles in the LAVA Subsystem, (H2, He, CO, CO2, CH4, H2O, N2, NH3, H2S, SO2)
Image and quantify the water created using the LAVA Subsystem
WE NEED (& VALUE) YOUR HELP!

HEOMD often calls upon the expertise of the planetary community
• E.g. recent LEAG-led lunar volatiles study & ongoing human Mars landing site study

These studies results in benefits to the community as they help HEOMD shape potential opportunities
• They are worth your time!

The types of opportunities include
• HEOMD-funded instrument on SMD missions (e.g. Mars 2020)
• HEOMD-funded instruments on foreign missions (e.g. Mini-RF)
• Focused HEOMD missions (e.g, RP)