POSTER SESSION II: CHELYABINSK: A WORTHY FALL
6:00 p.m. Town Center Exhibit Area

Righter K. Abell P. Agresti D. Berger E. L. Burton A. S. et al. POSTER LOCATION #517
Mineralogy, Petrology, Chronology, and Exposure History of the Chelyabinsk Meteorite and Parent Body [2686]
Chelyabinsk exhibits three lithologies, evidence for multiple impact, and heating events from 4.6 Ga to almost present day, and has a very young exposure age.

Park J. Herzog G. F. Nyquist L. E. Shih C.-Y. Haba M.-K. et al. POSTER LOCATION #518
26Al and 10Be Activities in Chelyabinsk (LL5): Implications for Cosmic-Ray Exposure History [1453]
Modeling of Chelyabinsk as an object 5 m in radius irradiated in one stage for 1.3 to 1.4 Ma can explain most but not all measurements of 26Al, 10Be, and 3He.

Lindsay F. N. Herzog G. F. Park J. Turrin B. D. Delaney J. S. et al. POSTER LOCATION #519
Chelyabinsk Ar-Ar Ages — A Young Heterogeneous LL5 Chondrite [2226]
We present Ar-Ar ages from 6 lithologically distinct fragments of the Chelyabinsk meteorite. Integrated and plateau ages range from 264 ± 2 to 2083 ± 5 Ma.

Nabelek L. Mazanec M. Kdyr S. Kletetschka G. POSTER LOCATION #520
Magnetic, In Situ, Mineral Characterization of Chelyabinsk Meteorite Thin Section [3006]
Meteorite, taenite, kamacite, coercivity.

Nakamura E. Kunihiro T. Kitagawa H. Kobayashi K. Ota T. et al. POSTER LOCATION #521
Recycling of an Asteroid via a Comet Inferred from the Chelyabinsk Meteorite [1865]
Comprehensive geochemical analyses revealed that a 20-m-sized Chelyabinsk body formed by catastrophic impact on 150 Ma and subsequently interacted with fluid.

Korycansky D. G. POSTER LOCATION #522
Modeling the Chelyabinsk Impact, 2 [1144]
Efforts to model the 2013 Chelyabinsk impact with the CTH code are described.

Kuzmicheva M. Yu. Losseva T. V. Lyakhov A. N. POSTER LOCATION #523
Transient Magnetic Fields Caused by Air-Blast Events [1947]
Geomagnetic field disturbances after air-blast events such as the Tunguska bolide and the Chelyabinsk bolide are considered.

Luther R. Lukashin A. Artemieva N. Shuvalov V. Wünnemann K. POSTER LOCATION #524
Snow Compaction During the Chelyabinsk Meteorite Fall [1724]
Simulations of snow funnels (iSALE) demonstrate the capability of the material models to describe the penetration of projectiles into highly porous materials.