Thursday, March 19, 2015

POSTER SESSION II: INSTRUMENTS AND PAYLOAD CONCEPTS:
DUST AND RADIATION
6:00 p.m. Town Center Exhibit Area

Pabari J. P. Banerjee D. Kanada A. Goyal S. K. Bhattacharya A. et al. POSTER LOCATION #290

Moon Electrostatic Potential and Dust Analyser (MESDA) for Future Lunar Mission [#1167]
This article presents lunar dust levitation modeling results and initial results of a Moon Electrostatic Potential and Dust Analyser for future lunar lander.

Oshigami S. Senshu H. Yamada R. Namiki N. Mizuno T. et al. POSTER LOCATION #291
Detectability of Levitation Dust Around the Asteroid by Hayabusa-2 LIDAR [#1292]
LIDAR instrument onboard Hayabusa-2 provides a function called dust count mode. We theoretically estimated the dust number density detectable by LIDAR.

Cohen B. A. Chabot N. L. Klima R. L. Ernst C. M. Rivkin A. S. et al. POSTER LOCATION #292
Using Dust from Asteroids as Regolith Microsamples [#1991]
Tiny particles/Lofted from asteroids are/Ex situ samples.

Li Y. W. Srama R. Bugiel S. POSTER LOCATION #293

Dust Trajectory Detector Using Single Grid Electrodes Plane [#2203]
We introduced two future simplified designs with fewer electrodes and lower instrument mass with respect to the original LDX design.

Odom F. Richter G. Brown J. Martinsen B. Cai R. et al. POSTER LOCATION #294
Piezoelectric Dust Detector Design and Calibration for the Armadillo Program [#2191]
Design and calibration of piezoelectric dust detector for LEO.

Senshu H. Oshigami S. Yamada R. Kobayashi M. Namiki N. et al. POSTER LOCATION #295
Dust Count Mode of LIDAR Onboard Hayabusa-2 [#1863]
Dust count mode is one of operational modes of LIDAR onboard Hayabusa-2 in which the LIDAR detects faint scattered light from dust on the line of sight.

Shirley K. A. Glotch T. D. Greenhagen B. T. White M. POSTER LOCATION #296
A Multiplicative Approach to Correcting the Thermal Channels for the Diviner Lunar Radiometer Experiment [#1992]
We have developed a correction method for normalizing the Diviner thermal wavelength emissivity data as a function of incidence angle.

Smith S. S. Spence H. E. Schwadron N. A. Zeitlin C. POSTER LOCATION #297
The MERLIN Phobos Ionizing Radiation Experiment (MPIRE) [#2636]
The MERLIN Phobos Ionizing Radiation Experiment (MPIRE) will measure the radiation environment around Mars’ moons.

Bouchard M. C. Marshall F. E. Parrish C. H. II Orenstein N. P. Lee I. A. POSTER LOCATION #298
Material Radiation Degradation Study (MARA-DS): A Payload Concept to Prepare for Human Missions to Mars [#2443]
This abstract summarizes a payload designed to investigate the radiation environment of the surface of Mars and its regolith’s ability to protect human missions.