Loizeau D. Flahaut J. Vago J. L. Hauber E. Bridges J. C. et al. POSTER LOCATION #605

ExoMars 2018: The Candidate Landing Sites [#1831]
The selection process of the landing site of the ESA ExoMars 2018 rover selected four potential sites in 2014. We present the sites and potential targets.

Balme M. R. Grindrod P. M. Sefton-Nash E. Davis J. Gupta S. et al. POSTER LOCATION #606

Aram Dorsum: A Noachian Inverted Fluvial Channel System and Candidate ExoMars 2018 Rover Landing Site [#1321]
The 2018 ESA ExoMars Rover will search for signs of past martian life. We present and describe Aram Dorsum, one of four candidate rover landing sites.

Carter J. Loizeau D. Quantin C. Balme M. Poulet F. et al. POSTER LOCATION #607

Mineralogic Context of the Circum-Chryse Planitia Candidate Landing Sites for the ExoMars Rover Mission [#1988]
Extensive clay-rich deposits are observed over the circum-Chryse Planitia margins, which provide context for the four ExoMars candidate landing sites.

Sefton-Nash E. Fawdon P. Gupta S. Balme M. Davis J. et al. POSTER LOCATION #608

The Hypanis Fluvial Deltaic System in Xanthe Terra: A Candidate ExoMars 2018 Rover Landing Site [#1414]
Hypanis delta/ExoMars Rover lands there??Such habitable.

Grima C. Blankenship D. D. POSTER LOCATION #609

Radar Statistical Reconnaissance of the 2016 InSight Landing Sites [#1238]
We apply the novel Radar Statistical Reconnaissance technique to SHARAD data to support landing site selection of the 2016 InSight Mars Lander.

Reiss D. Lorenz R. D. POSTER LOCATION #610

Dust Devil Track Survey at the Insight Landing Sites: Implications for the Probability of Solar Panel Clearing Events [#2070]
We give encounter rate predictions of intense (able to remove dust from solar arrays) dust devils with the InSight lander.

Pivarunas A. Warner N. H. Golombek M. P. POSTER LOCATION #611

Onset Diameter of Rocky Ejecta Craters in Western Elysium Planitia, Mars: Constraints for the Regolith Thickness at the InSight Landing Site [#1129]
We provide new data for the regolith thickness across the ridged plains of western Elysium Planitia using the onset diameter of rocky ejecta craters.

Golombek M. P. Grant J. A. Farley K. A. Chen A. POSTER LOCATION #612

Science Objectives, Engineering Constraints, and Landing Sites Proposed for the Mars 2020 Rover Mission [#1653]
Science objectives, engineering constraints, and landing sites proposed for the Mars 2020 rover mission at the first Landing Site Workshop are discussed.
Calef F. J. III Clark B. Goetz W. Lasue J. Martin-Torres J. et al. POSTER LOCATION #613

Assessing Gale Crater as a Potential Human Mission Landing Site on Mars [2791]

A Mars mission is the “horizon goal” for human space flight. We assess Gale Crater in terms of EDL, in situ resources, and science return with positive results.

Williams R. M. E. Eby M. A. Stahle R. L. Bhartia R. POSTER LOCATION #614

MARSDROP Microprobe Architecture: Broadening the Science Return and In Situ Exploration from Mars Missions [2276]

MARS\textsc{drop}, a secondary payload, is a targeted microprobe delivery system that can expand the list of viable landing sites for scientific exploration on Mars.