Allen C. C.
POSTER LOCATION #203

A Massive Central Peak and a Low Peak Ring in Gale Crater — Important Influences on the Formation of Mt. Sharp [#2787]

The central peak and peak ring of Gale Crater would have strongly influenced the deposition and erosion of the sediments forming Mt. Sharp.

Pascuzzo A. Allen C.
POSTER LOCATION #204

Modeling the Geologic History of Mt. Sharp [#1449]

Modeling the geologic history of Mt. Sharp through the geomorphologic comparison of six other craters with sedimentary mounds and four craters with peak rings.

Buz J. Ehlmann B. L.
POSTER LOCATION #205

Stratigraphy of the Gale Crater Rim and Floor Units [#2656]

A significant amount of material on the Gale floor has been transported either from the wall, rim, or beyond.

Martínez G. M. Renno N. O. Fischer E. de la Torre Juarez M. Meslin P-Y. et al.
POSTER LOCATION #206

Potential Sub-Micrometer-Thick Frost Events and Soil Water Content at Gale Crater: Calculations from MSL/REMS Measurements [#2277]

We analyze MSL/REMS measurements to identify surface frost events and to calculate the soil water content at Gale Crater during the first 800 sols.

POSTER LOCATION #207

Recent Mastcam and MAHLI Visible/Near-Infrared Spectrophotometric Observations: Kimberley to Hidden Valley [#1424]

On Curiosity, Mastcam acquired two photometric datasets between sols 611 and 726, and MAHLI was used as a goniometer on sol 707 to image a layered rock (Stirling).

Fraeman A. A. Arvidson R. E. Ehlmann B. L. Bridges N. T. Clark B. et al.
POSTER LOCATION #208

Physical and Material Properties of Gale Crater Sandy Deposits: From Rocknest to Pahrump [#1682]

We use orbital and in situ data to study ripples in Gale Crater, and consider how their physical properties determines Curiosity’s ability to traverse them.

POSTER LOCATION #209

Exploring Curiosity’s Future Path from Orbit: The View of Lower Mt. Sharp from Integrated CRISM, HiRISE, and THEMIS Datasets [#2124]

We combine CRISM, HiRISE, and THEMIS thermal inertia over lower Mt. Sharp to provide detailed, local context for Curiosity in situ analysis.

Minitti M. E. Van Beek J. Garvin J. B. Goetz W. Grotzinger J. P. et al.
POSTER LOCATION #210

Mapping the Pahrump Hills Outcrop Using MARDI Sidewalk Mosaics [#2399]

MARDI sidewalk mosaics provide a contiguous record of sedimentary structures and diagenetic textures across the Pahrump Hills outcrop.

POSTER LOCATION #211

Mars Hand Lens Imager (MAHLI) Observations at the Pahrump Hills Field Site, Gale Crater [#2855]

Image observations by the MAHLI instrument on the Mars Science Laboratory rover at the Pahrump Hills field site in Gale Crater.
Unraveling Curiosity Observations of Sedimentary Rocks at Kylie

Kylie sedimentary rocks (sandstone and conglomerate facies) are part of a broader depositional sequence of cyclical fluvial-lacustrine environments.

Degradation of Endeavour Crater, Mars

Opportunity is traversing rim segments of the 22-km-diameter Endeavour crater in Meridiani Planum and indicates variable but substantial degradation occurred.

Stratigraphy and Morphology of Iazu Crater

The walls of Iazu Crater expose a stratigraphic sequence that reflects the record of aqueous alteration in Meridiani Planum.